

Technical Report

Title:

Static water penetration testing of the Barracuda brick slip

system

Report No: N950-22-18406

Technical Report

Title:

Static water penetration testing of the Barracuda brick slip system

Customer:

James & Taylor Ltd,

Sixty-Two, Barwell Business Park,

Leatherhead Road, Chessington, Surrey KT9 2NY.

Issue date:

7 February 2024

VTC job no.:

TR0220-3WK2

Author(s):

D. Bennett - Technician

27

Checked by:

N. McDonald - Manager

Authorised by:

S. R. Moxon – Operations Director

Distribution:

1 copy to James & Taylor

(confidential)

1 copy to project file

This report and the results shown and any recommendations or advice made herein is based upon the information, drawings, samples and tests referred to in the report. Where this report relates to a test for which VINCI Technology Centre UK Limited is UKAS accredited, the opinions and interpretations expressed herein are outside the scope of the UKAS accreditation. We confirm that we have exercised all reasonable skill and care in the preparation of this report within the terms of this commission with the client. This approach takes into account the level of resources, manpower, testing and investigations assigned to it as part of the client agreement. We disclaim any responsibility to the client and other parties in respect of any matters outside the scope of our instruction. This report is confidential and privileged to the client, his professional advisers and VINCI Technology Centre UK Limited and we do not accept any responsibility of any nature to third parties to whom the report, or any part thereof, is made known. No such third party may place reliance upon this report. Unless specifically assigned or transferred within the terms of the agreement, we assert and retain all copyright, and other Intellectual Property Rights, in and over the report and its contents.

VINCI Technology Centre UK Limited, Stanbridge Road, Leighton Buzzard, Bedfordshire, LU7 4QH

Registered Office, Watford. Registered No. 05640885 England.

Tel

0333 5669000

email info@technology-centre.co.uk web www.technology-centre.co.uk

web www.techno
© Technology Centre

CONTENTS

1	INTRODUCTION	4
2	SUMMARY AND CLASSIFICATION OF TEST RESULTS	5
3	DESCRIPTION OF TEST SAMPLE	6
4	TEST RIG GENERAL ARRANGEMENT	8
5	TEST SEQUENCE	9
6	TESTING	10
7	APPENDIX - DRAWINGS	18

1 INTRODUCTION

This report describes a static water test carried out at VINCI Technology Centre UK Limited at the request of James & Taylor Limited.

The test sample consisted of a Barracuda brick slip system supplied by James & Taylor.

The test was carried out on 26 September 2022 and was to determine the water penetration of the test sample. The test methods were in accordance with the CWCT Standard Test Methods for building envelopes, 2005, for:

Watertightness - static pressure

This test report relates only to the actual sample as tested and described herein.

The results are valid only for sample(s) tested and the conditions under which the tests were conducted.

The long-term durability of the façade system is not assessed by these test methods.

VINCI Technology Centre UK Limited is accredited to ISO/IEC 17025:2017 by the United Kingdom Accreditation Service as UKAS Testing Laboratory No. 0057 for a schedule of tests. Tests listed above and marked with an asterisk are not on our schedule.

VINCI Technology Centre UK Limited is Approved Body No. 1766.

VINCI Technology Centre UK Limited is certified by BSI for:

- ISO 9001 Quality Management System,
- ISO 14001 Environmental Management System,
- ISO 45001 Occupational Health and Safety Management System.

The test was witnessed by John Champion of James & Taylor.

2 SUMMARY AND CLASSIFICATION OF TEST RESULTS

The following summarises the results of the test carried out. For full details refer to Section 6.

2.1 SUMMARY OF TEST RESULTS

TABLE 1

Date	Test number	Test description	Result
26 September 2022	1	Watertightness – static	Pass
10 November 2022	2	Controlled dismantle	Pass

2.2 CLASSIFICATION

TABLE 2

Test	Standard	Classification / Declared value	
Watertightness	CWCT / BS EN 12154	R7 / 600 pascals	

3 DESCRIPTION OF TEST SAMPLE

3.1 GENERAL ARRANGEMENT

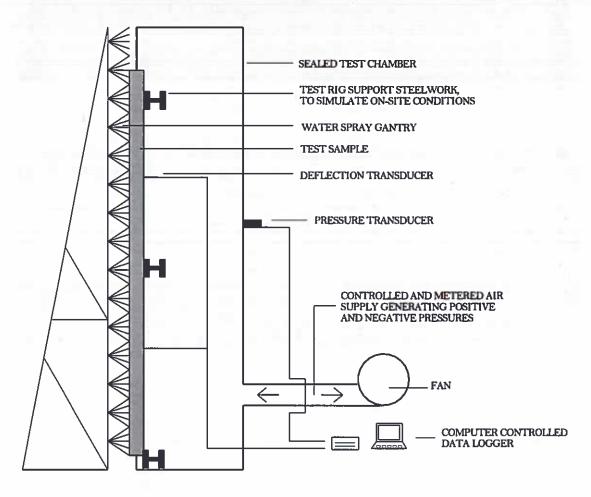
The sample was as shown in the photo below and the drawings included as an appendix to this report.

The test sample comprised 9 different brick slip types.

TABLE 3

Brick Typ	Brick Types Selected for Independent Testing			
Brick Type No.	TO I MATERIAND			
1	Wienerberger Sandalwood Yellow Multi			
2	Michelmersh Charnwood Light Victorian Red			
3	Ibstock Leicester Red Stock			
4	Ibstock Chesterton Multi Red Smooth			
5	Blockley Windermere Grey Solid			
6	Wienerberger Olde Ivory Stock			
7	Wienerberger Smeed Dean London Stock			
8	Ibstock Aldridge Anglian Red Multi Rustic			
9	Michelmersh Hadley Brindle Wirecut			

TEST SAMPLE ELEVATION



4 TEST RIG GENERAL ARRANGEMENT

The test sample was mounted on a rigid test rig with support steelwork designed to simulate the on-site/project conditions. The test rig comprised a well sealed chamber, fabricated from steel and plywood. A door was provided to allow access to the chamber. Representatives of James & Taylor installed the sample on the test rig. See Figure 1.

FIGURE 1

TEST RIG SCHEMATIC ARRANGEMENT

SECTION THROUGH TEST RIG

5 TEST SEQUENCE

The test sequence was as follows:

- (1) Watertightness static
- (2) Controlled dismantle

6 TESTING

6.1 INSTRUMENTATION

6.1.1 Pressure

One static pressure tapping was provided to measure the chamber pressure and was located so that the readings were unaffected by the velocity of the air supply into or out of the chamber.

A pressure transducer, capable of measuring rapid changes in pressure to within 2% was used to measure the differential pressure across the sample.

6.1.2 Water Flow

An in-line water flow meter was used to measure water supplied to the spray gantry to within 5%.

6.1.3 Temperature

Platinum resistance thermometers (PRT) were used to measure air and water temperatures to within 1°C.

6.1.4 General

Electronic instrument measurements were scanned by a computer controlled data logger, which also processed and stored the results.

All measuring instruments and relevant test equipment were calibrated and traceable to national standards.

6.2 FAN

The air supply system comprised a variable speed centrifugal fan and associated ducting and control valves to create positive and negative static pressure differentials. The fan provided essentially constant air flow at the fixed pressure for the period required by the tests and was capable of pressurising at a rate of approximately 600 pascals in one second.

6.3 WATER SPRAY

The water spray system comprised nozzles spaced on a uniform grid not more than 700 mm apart and mounted approximately 400 mm from the face of the sample. The nozzles provided a full-cone pattern with a spray angle between 90° and 120°. The spray system delivered water uniformly against the exterior surface of the sample.

6.4 PROCEDURE

Three positive pressure pulses of 660 pascals were applied to prepare the test sample.

Water was sprayed onto the sample using the method described above at a rate of at least 3.4 litres/m²/minute for 15 minutes at zero pressure differential. With the water spray continuing the pressure differential across the sample was then increased in increments of: 50, 100, 150, 200, 300, 450 and 600 pascals, each held for 5 minutes.

Throughout the test the interior face of the sample was examined for water penetration.

6.5 PASS/FAIL CRITERIA

There shall be no excessive water penetration into the test chamber throughout testing. At the completion of the test there shall be no standing water in locations intended to remain dry. Water on the back of the sample should drain out at the base of the sample.

6.6 RESULTS

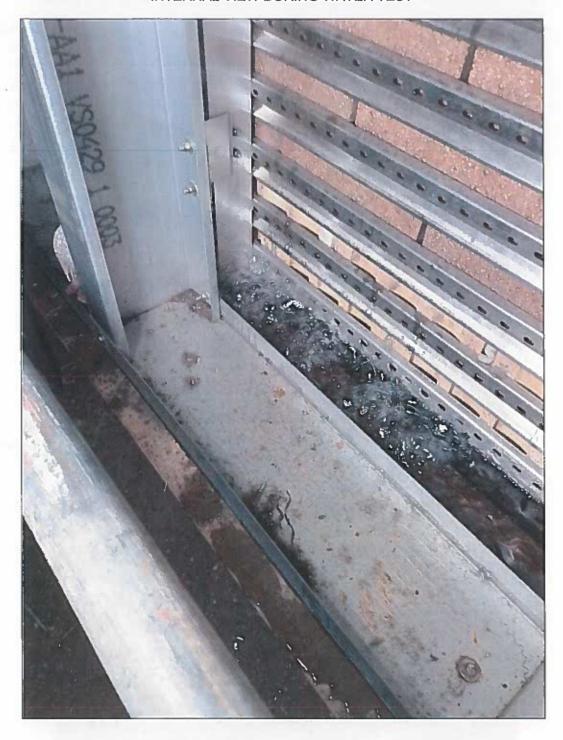
Test Date: 26 September 2022

At zero pressure minor water leakage was observed seeping through some of the brick slips and running down the rails.

The water leakage rate and area increased with increased pressure and was across all the brick types. The water was confined to the back of the bricks and rails and ran down to the base of the sample where it would drain out through a ventilated cavity.

Chamber temperature = 12°C Ambient temperature = 12°C Water temperature = 12°C

INTERNAL VIEW DURING WATER TEST


PHOTO 081411

INTERNAL VIEW DURING WATER TEST

INTERNAL VIEW DURING WATER TEST

6.7 CONTROLLED DISMANTLING

During the dismantling of the sample no discrepancies from the drawings were found.

PHOTO 6137

TEST SAMPLE DURING DISMANTLE

PHOTO 6145

TEST SAMPLE DURING DISMANTLE

TEST SAMPLE DURING DISMANTLE

PHOTO 6157

TEST SAMPLE DURING DISMANTLE

Page 15 of 18

TEST SAMPLE DURING DISMANTLE

PHOTO 6159

TEST SAMPLE DURING DISMANTLE

Page 16 of 18

BRICK SLIPS REMOVED FROM TEST RIG

PHOTO 6181

SUPPORT FRAME REMOVED FROM TEST RIG

7 APPENDIX - DRAWINGS

The following 4 unnumbered pages are copies of James & Taylor Limited drawings numbered:

BSS-TRA-GA-001,

BSS-TRA-GA-002,

BSS-TRA-GA-003,

BSS-TRA-T3.

END OF REPORT

203×203×46 UC AZF axoaxoa TEST RIG TYPE A STEEL FRAMING (TO BE PROVIDED BY TECHNOLOGY CENTRE) 203x203x46 UC 203x203x46 UC 60x60x6 RSA 60x60x6 RSA 3623 23.5 A2F 8x08x08 S03×S03×40 NC 23,5 GROUND LEVEL + 500mm 3010

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

STEEL FRAMING REQUIREMENT 203/203x46 UC (AS DRAWN) 60x60x6 RSA (AS DRAWN)

JSC PLOT SIZE: A3 REVISION CHECKED BY: GENERAL ARRANGEMENT JAMES & TAYLOR LTD PROJECT: BRICK SLIP SYSTEM TEST RIG TYPE A BSS-TRA-GA-001 03/12/2021 DRAWN BY REVISIONS SC SCALE 1:16

C James & Topics Life 2008

5:34 PM

PLOT DATE: December 5, 2021

TEST RIG TYPE A METSEC BACKING WALL; STUDWORK, BASE, AND HEAD TRACK SETTING OUT/CONFIGURATION 161,25 203×203×46 UC A2A 8x08x08 To be seed to proportion of the seed of th 301,25 50 8 8 203x203x46 UC 203x203x46 UC 3000 3602 89 9 450 301,25 AZA 3x03x03 161,25 203×203×46 UC 8

1962

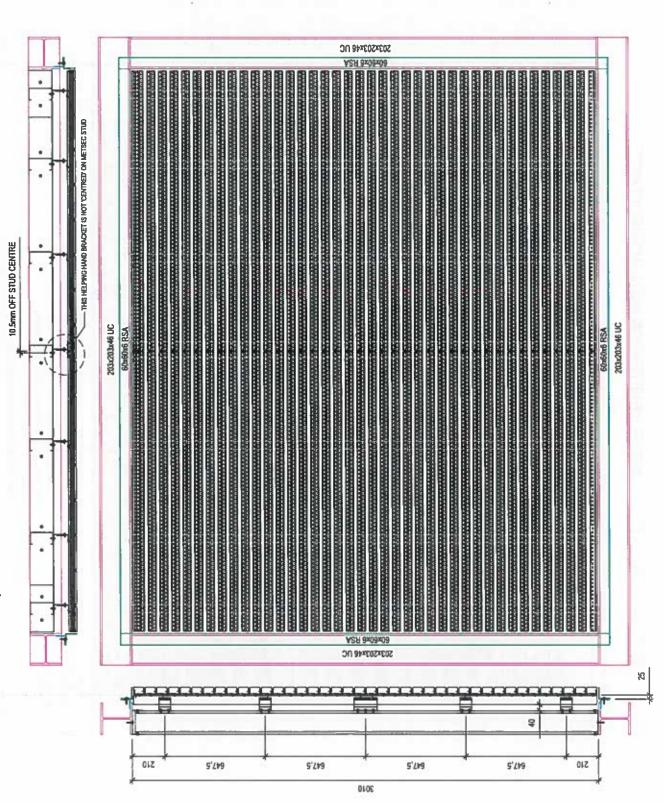
GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

METSEC REQUIREMENT
VERTICAL STUDS
150M12-75 (THEORETICAL LENGTH 2887mm) = 7 No.
BASE TRACK
154M12-40 (THEORETICAL LENGTH 3602mm) = 1 No.

HEAD TRACK 154M16-703 (THEORETICAL LENGTH 3602mm) = 1 No.


DATE	JAMES & TAYLOR LTD	BRICK SLIP SYSTEM	TEST RIG TYPE A GENERAL ARRANGEMENT MTE. 03/12/2021	CHECKER BY.	PLOT SIZE A3	MEER REVISION.
REVSIDIGE	DAMES & TA	PROJECT BRICK SLIP S	TEST RIG TYPE A GENERAL ARRAN MTE 03/12/2021	DRAWM BY: JSC	scare 1:16	DRAWNGNUMBER:

C amen't fayer in 2000

6:18 PM

PLOT DATE. January 16, 2022

TEST RIG TYPE A 'HELPING HAND' BRACKET, VERTICAL SUB-STRUCTURE AND BARRACUDA RAIL SETTING OUT/CONFIGURATION

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

BARRACUDA HORIZONTAL RAIL REQUIREMENT

BAR-R1-1800 = 78 No.

BAR-R3-1800 = 2 No.

BARRACUDA VERTICAL RAIL REQUIREMENT BAR-VL1-2990 = 6 No.

BAR-VT1-2990 = 1 No.

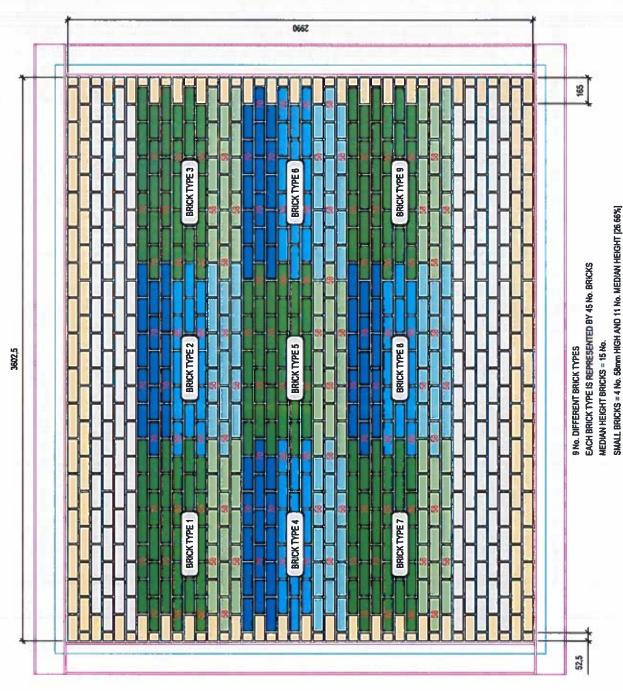
THELPING HAND BRACKET REQUIREMENT Melope 90 (ADJUSTMENT RANGE 92mm TO 132mm)

VERTICAL LOAD BEARING HELPING HAND = 7 No.

RESTRAIN HELPING HAND = 28 No.

JAMES & TAYLOR LTD

BRICK SLIP SYSTEM


GENERAL ARRANGEMENT TEST RIG TYPE A

03/12/2021

PLOT SIZE. 83 CHECKED BY **SEVISION** BSS-TRA-GA-003 DRAWING NUMBER DRAWN BY SC SCALE

C James & Toper Las - 2008 6:56 PM PLOT DATE: January 16, 2022

TEST RIG TYPE A - TEST 3 [WATER PENETRATION AND WIND RESISTANCE]

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

= BLOCKLEY WINDERMERE GREY SOLID	215mm LONG 'STANDARD' SLIPS = 135 No.	= WIENERBERGER STAFFORDSHIRE SMOOTH CREAM
= BLOCKLEY WINDE	215mm LONG 'STANDARD' SLIP	SMOOTH CREAM

215mm LONG SLIPS WITH BOTTOM REBATE = 15 No. 165mm LONG SLIPS WITH BOTTOM REBATE = 1 No. 52mm LONG SLIPS WITH BOTTOM REBATE = 1 No. 215mm LONG SLIPS WITH TOP' REBATE = 15 No. 165mm LONG SLIPS WITH 'TOP' REBATE = 1 No. 52mm LONG SLIPS WITH TOP REBATE = 1 No. 215mm LONG 'STANDARD' SLIPS = 30 No. 165mm LONG 'STANDARD' SLIPS = 38 No. 52mm LONG 'STANDARD' SLIPS = 38 No.

BM: AMES # TAXLOD I TO	TSTOKE: DATE:
	DATE

PENETRATION AND WIND RESISTANCE DATE: TEST RIG TYPE A - TEST 3 WATER **BRICK SLIP SYSTEM**

04/12/2021

83 CHECKED BY: PLOT SIZE BSS-TRA-T3 DRAWING NUMBER DRAWN BY 280 SCALE

5:39 PM PLOT DATE: December 5, 2021

LARGE BRICKS = 4 No. 70mm HIGH AND 11 No. MEDIAN HEIGHT [26.56%]

C hama & Topis Lin - 2000

VINCI Technology Centre UK Limited Stanbridge Road Leighton Buzzard Bedfordshire LU7 4QH UK

0333 5669000

info@technology-centre.co.uk www.technology-centre.co.uk

Technical Report

Title:

Dynamic water penetration testing of the Barracuda brick slip

system

Report No: N950-22-18407

Technical Report

Title:

Dynamic water penetration testing a Barracuda brick slip system

Customer:

James & Taylor Ltd,

Sixty-Two, Barwell Business Park,

Leatherhead Road, Chessington, Surrey KT9 2NY.

Issue date:

7 February 2024

VTC job no.:

TR0220-3WK2

Author(s):

D. Bennett - Technician

27

NMF) add

Checked by:

N. McDonald - Manager

Authorised by:

S. R. Moxon – Operations Director

Distribution:

1 copy to James & Taylor

(confidential)

1 copy to project file

This report and the results shown and any recommendations or advice made herein is based upon the information. drawings, samples and tests referred to in the report. Where this report relates to a test for which VINCI Technology Centre UK Limited is UKAS accredited, the opinions and interpretations expressed herein are outside the scope of the UKAS accreditation. We confirm that we have exercised all reasonable skill and care in the preparation of this report within the terms of this commission with the client. This approach takes into account the level of resources, manpower, testing and investigations assigned to it as part of the client agreement. We disclaim any responsibility to the client and other parties in respect of any matters outside the scope of our instruction. This report is confidential and privileged to the client, his professional advisers and VINCI Technology Centre UK Limited and we do not accept any responsibility of any nature to third parties to whom the report, or any part thereof, is made known. No such third party may place reliance upon this report. Unless specifically assigned or transferred within the terms of the agreement, we assert and retain all copyright, and other intellectual Property Rights, in and over the report and its contents.

VINCI Technology Centre UK Limited, Stanbridge Road, Leighton Buzzard, Bedfordshire, LU7 4QH

Registered Office, Watford. Registered No. 05640885 England.

Tel.

0333 5669000

info@technology-centre.co.uk email www.technology-centre.co.uk web

© Technology Centre

CONTENTS

1	INTRODUCTION	4
2	SUMMARY AND CLASSIFICATION OF TEST RESULTS	5
3	DESCRIPTION OF TEST SAMPLE	6
	TEST RIG GENERAL ARRANGEMENT	
5	TEST SEQUENCE	
6	WATERTIGHTNESS TESTING	10
7	APPENDIX - DRAWINGS	20

1 INTRODUCTION

This report describes a dynamic water test carried out at VINCI Technology Centre UK Limited at the request of James & Taylor Limited.

The test sample consisted of a Barracuda brick slip system supplied by James & Taylor.

The test was carried out on 26 September 2022 and was to determine the water penetration of the test sample. The test methods were in accordance with the CWCT Standard Test Methods for building envelopes, 2005, for:

Watertightness - dynamic pressure.

This test report relates only to the actual sample as tested and described herein.

The results are valid only for sample(s) tested and the conditions under which the tests were conducted.

The long-term durability of the façade system is not assessed by these test methods.

VINCI Technology Centre UK Limited is accredited to ISO/IEC 17025:2017 by the United Kingdom Accreditation Service as UKAS Testing Laboratory No. 0057 for a schedule of tests. Tests listed above and marked with an asterisk are not on our schedule.

VINCI Technology Centre UK Limited is Approved Body No. 1766.

VINCI Technology Centre UK Limited is certified by BSI for:

- ISO 9001 Quality Management System,
- ISO 14001 Environmental Management System,
- ISO 45001 Occupational Health and Safety Management System.

The test was witnessed by John Champion of James & Taylor.

2 SUMMARY AND CLASSIFICATION OF TEST RESULTS

The following summarises the results of the test carried out. For full details refer to Section 6.

2.1 SUMMARY OF TEST RESULTS

TABLE 1

Date	Test number	Test description	Result
26 September 2022	1	Watertightness – dynamic	Pass
10 November 2022	2	Controlled dismantle	Pass

2.2 CLASSIFICATION

TABLE 2

Test	Standard	Classification / Declared value
Watertightness - dynamic	CWCT	600 pascals

3 DESCRIPTION OF TEST SAMPLE

3.1 GENERAL ARRANGEMENT

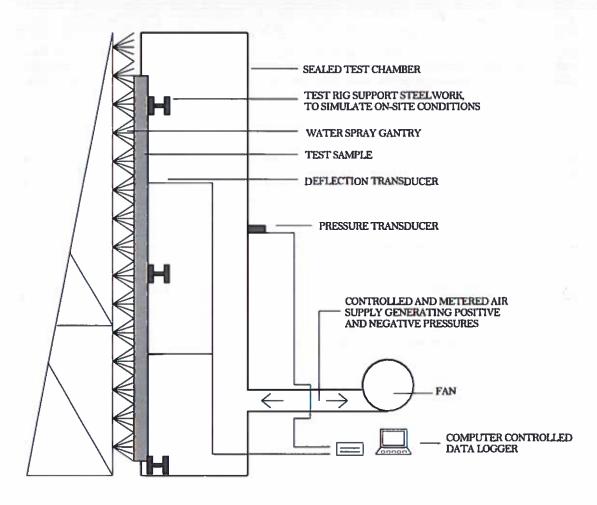
The sample was as shown in the photo below and the drawings included as an appendix to this report.

The test sample comprised 9 different brick slip types.

TABLE 3

Brick Types Selected for Independent Testing				
Brick Type No.	Brick Type			
1	Wienerberger Sandalwood Yellow Multi			
2	Michelmersh Charnwood Light Victorian Red			
3	Ibstock Leicester Red Stock			
4	Ibstock Chesterton Multi Red Smooth			
5	Blockley Windermere Grey Solid			
6	Wienerberger Olde Ivory Stock			
7	Wienerberger Smeed Dean London Stock			
8	Ibstock Aldridge Anglian Red Multi Rustic			
9	Michelmersh Hadley Brindle Wirecut			

TEST SAMPLE ELEVATION



4 TEST RIG GENERAL ARRANGEMENT

The test sample was mounted on a rigid test rig with support steelwork designed to simulate the on-site/project conditions. The test rig comprised a well sealed chamber, fabricated from steel and plywood. A door was provided to allow access to the chamber. Representatives of James & Taylor installed the sample on the test rig. See Figure 1.

FIGURE 1

TEST RIG SCHEMATIC ARRANGEMENT

SECTION THROUGH TEST RIG

5 TEST SEQUENCE

The test sequence was as follows:

- (1) Watertightness dynamic
- (2) Controlled dismantle

6 TESTING

6.1 INSTRUMENTATION

6.1.1 Pressure

One static pressure tapping was provided to measure the chamber pressure and was located so that the readings were unaffected by the velocity of the air supply into or out of the chamber.

A pressure transducer, capable of measuring rapid changes in pressure to within 2% was used to measure the differential pressure across the sample.

6.1.2 Water Flow

An in-line water flow meter was used to measure water supplied to the spray gantry to within 5%.

6.1.3 Temperature

Platinum resistance thermometers (PRT) were used to measure air and water temperatures to within 1°C.

6.1.4 General

Electronic instrument measurements were scanned by a computer controlled data logger, which also processed and stored the results.

All measuring instruments and relevant test equipment were calibrated and traceable to national standards.

6.2 FAN

A wind generator was mounted adjacent to the external face of the sample and used to create positive pressure differentials during dynamic testing. The wind generator comprised an electric fan.

6.3 WATER SPRAY

The water spray system comprised nozzles spaced on a uniform grid not more than 700 mm apart and mounted approximately 400 mm from the face of the sample. The nozzles provided a full-cone pattern with a spray angle between 90° and 120°. The spray system delivered water uniformly against the exterior surface of the sample.

DYNAMIC WIND TEST

6.4 PROCEDURE

Water was sprayed onto the sample using the method described above at a flow rate of at least 3.4 litres/m²/minute.

An electric fan was used to subject the sample to wind of sufficient velocity to produce average deflections in the principle framing members equal to those produced by a static pressure differential of 600 pascals. These conditions were maintained for 15 minutes. Throughout the test the inside of the sample was examined for water penetration.

6.5 PASS/FAIL CRITERIA

There shall be no excessive water penetration into the test chamber throughout testing. At the completion of the test there shall be no standing water in locations intended to remain dry. Water on the back of the sample should drain out at the base of the sample.

6.6 RESULTS

Test Date: 26 September 2022

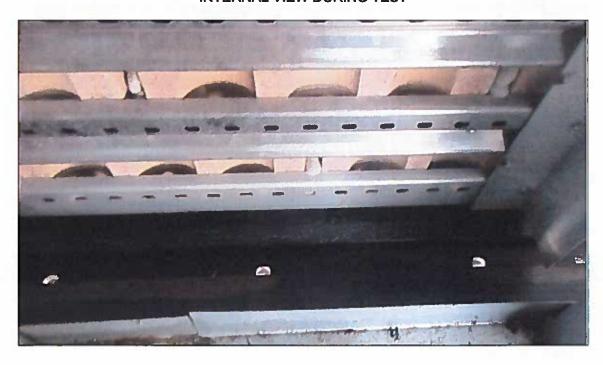
After 1 minute into the test, slow dripping was observed down the back of the bricks/rails.

During the test period the amount of water leakage remained constant and was confined to the back of the tiles and support rails. The water drained out at the base of the sample through drainage holes.

Chamber temperature= 13°C

Ambient temperature = 13°C

Water temperature = 13°C



INTERNAL VIEW DURING TEST

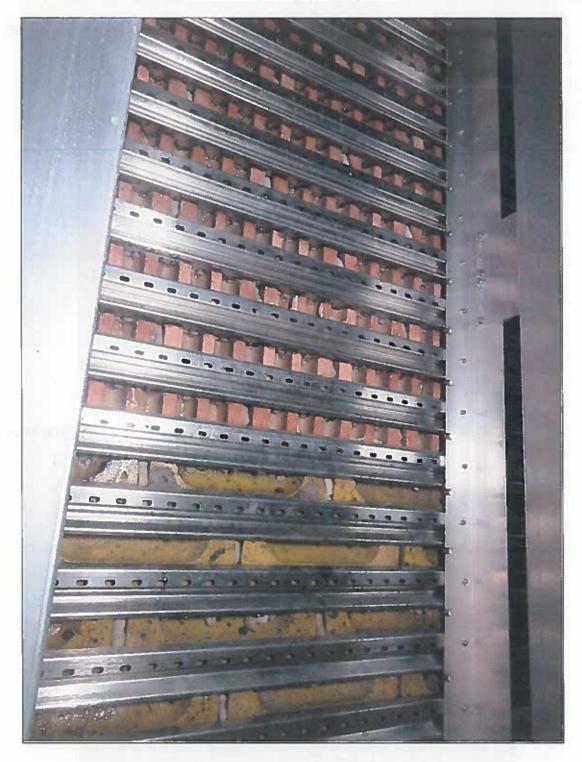
PHOTO 5149

INTERNAL VIEW DURING TEST

INTERNAL VIEW DURING TEST

PHOTO 5152

INTERNAL VIEW DURING TEST



INTERNAL VIEW DURING TEST

INTERNAL VIEW DURING TEST

6.7 CONTROLLED DISMANTLING

During the dismantling of the sample no discrepancies from the drawings were found.

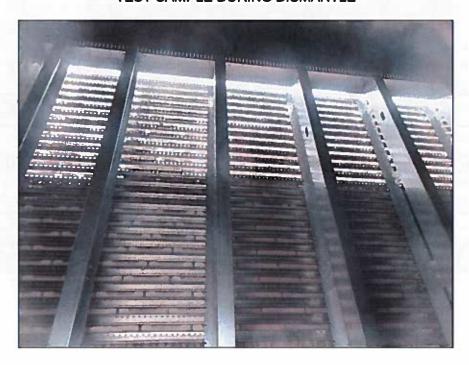

PHOTO 6137

PHOTO 6145

TEST SAMPLE DURING DISMANTLE

TEST SAMPLE DURING DISMANTLE

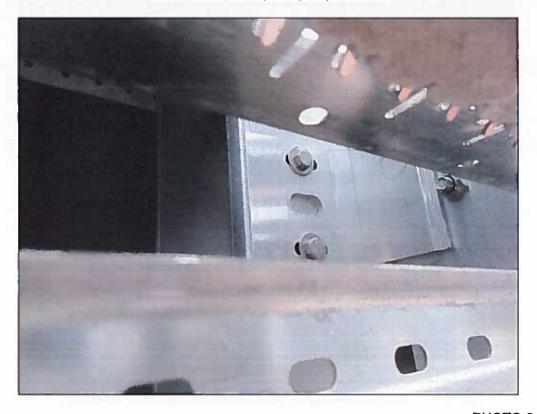


PHOTO 6157

TEST SAMPLE DURING DISMANTLE

PHOTO 6159

BRICK SLIPS REMOVED FROM TEST RIG

PHOTO 6181

SUPPORT FRAME REMOVED FROM TEST RIG

7 APPENDIX - DRAWINGS

The following 4 unnumbered pages are copies of James & Taylor Limited drawings numbered:

BSS-TRA-GA-001,

BSS-TRA-GA-002,

BSS-TRA-GA-003,

BSS-TRA-T3.

END OF REPORT

203×203×46 UC AZR axtaxta TEST RIG TYPE A STEEL FRAMING (TO BE PROVIDED BY TECHNOLOGY CENTRE) 203x203x46 UC 203x203x46 UC 60x60x6 RSA 60x60x6 RSA 3623 23.5 A2FI 3x03x03 203×203×46 UC 23,5 GROUND LEVEL + 500mm 3010

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

STEEL FRAMING REQUIREMENT 203x203x46 UC (AS DRAWN) 60x60x6 RSA (AS DRAWN)

REVSIONS	DATE
CLENT: JAMES & TAYLOR LTD	
PROJECT: BRICK SLIP SYSTEM	
me TEST RIG TYPE A GENERAL ARRANGEMENT	
03/12/2021	
DRAWN BY: JSC	CHECKED BY
1:16	PLOT SUZE A3
DRAWING HUMBER: BSS-TRA-GA-001	REVISION
Profibite: December 5, 2021 5:34 PM ©	C James & Taylor Lill - 2008

TEST RIG TYPE A METSEC BACKING WALL; STUDWORK, BASE, AND HEAD TRACK SETTING OUT/CONFIGURATION 161,25 \$03×\$03×4@ NC A2A 8x08x08 THE STATE OF THE PROPERTY AND THE PROPERTY OF 301,25 22 600 8 203x203x46 UC 203x203x46 UC 3602 8 909 8 301,25 A2A 8x08x08 161,25 203×203×46 UC ≅ ∐

7862

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

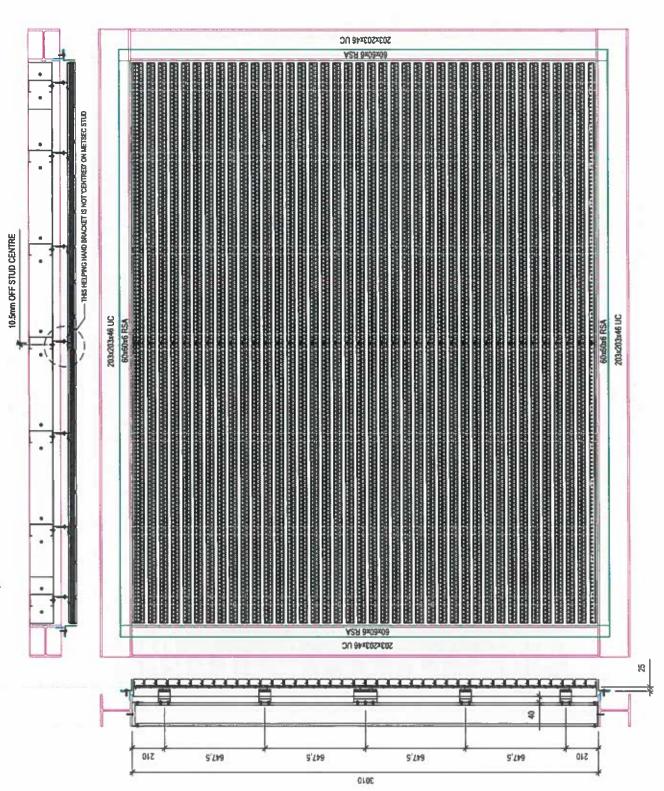
THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

ARCHITECT'S AND ENGINEER'S DRAWINGS.

METSEC REQUIREMENT
VERTICAL STUDS
150M12-75 (THEORETICAL LENGTH 2987mm) = 7 No.

BASE TRACK 154M12-40 (THEORETICAL LENGTH 3602mm) = 1 No. LEAN TRACK

ENGTH 3602mm) = 1 No.		
HEAD TRACK 154M16-70s (THEORETICAL LENGTH 3602mm) = 1 No.		


DATE				CHECKED BY: JSC	Prof soft	MANSON
REVISIONS:	AMES & TAYLOR LTD	ROJECT. BRICK SLIP SYSTEM	TEST RIG TYPE A GENERAL ARRANGEMENT DATE: 03/12/2021	DRAWN BY: JSC	1:16	DAMMIN MARKE BSS-TRA-GA-002

C James Copelia 2008

6:18 PM

PLOT DATE: January 16, 2022

TEST RIG TYPE A 'HELPING HAND' BRACKET, VERTICAL SUB-STRUCTURE AND BARRACUDA RAIL SETTING OUT/CONFIGURATION

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

BARRACUDA HORIZONTAL RAIL REQUIREMENT

BAR-R1-1800 = 78 No.

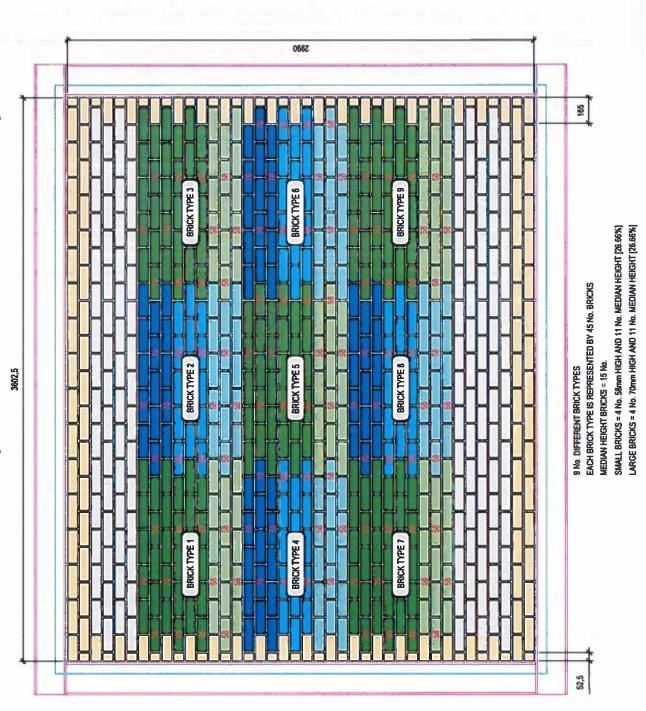
BAR-R2-1800 = 2 No. BAR-R3-1800 = 2 No.

BARRACUDA VERTICAL RAIL RECUIREMENT

BAR-VL1-2990 = 6 No. BAR-VT1-2990 = 1 No.

Nyelope 90 (ADJUSTMENT RANGE 92mm TO 132mm) VERTICAL LOAD BEARING HELPING HAND = 7 No. HELPING HAND' BRACKET REQUIREMENT

RESTRAIN HELPING HAND = 28 No.


SC DATE 83 PLOT SIZE CHECKED BY PVISION GENERAL ARRANGEMENT JAMES & TAYLOR LTD BRICK SLIP SYSTEM TEST RIG TYPE A BSS-TRA-GA-003 DRAWING MUMBER 03/12/2021 DRAWN BY JSC SCALE

C Jame LToperts 2000

6:56 PM

PLOT DATE: January 16, 2022

TEST RIG TYPE A - TEST 3 [WATER PENETRATION AND WIND RESISTANCE]

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECTS AND ENGINEER'S DRAWINGS.

215mm LONG SLIPS WITH BOTTOM REBATE = 15 No. = BLOCKLEY WINDERMERE GREY SOLID 165mm LONG SLIPS WITH BOTTOM REBATE = 1 No. 52mm LONG SLIPS WITH BOTTOM REBATE = 1 No. = WENERBERGER STAFFORDSHIRE SMOOTH CREAM 215mm LONG SLIPS WITH TOP REBATE = 15 No. 165mm LONG SLIPS WITH TOP REBATE = 1 No. 52mm LONG SLIPS WITH TOP REBATE = 1 No. 215mm LONG 'STANDARD' SLIPS = 135 No. 215mm LONG 'STANDARD' SLIPS = 30 No. 165mm LONG 'STANDARD' SLIPS = 38 No. 52mm LONG 'STANDARD' SLIPS = 38 No.

DATE	LORLTD	YSTEM	TEST RIG TYPE A - TEST 3 WATER PENETRATION AND WIND RESISTANCE ANTE:	OECXED BY	ROTSZE A3	REVISION	
REVISIONS:	CLERT: JAMES & TAYLOR LTD	MOJECT SUP SYSTEM	TEST RIG TYPE PENETRATION DATE: 0412/2021	DRAWN BY: JSC	scare 1:16	DRAWING NUMBER BSS-TRA-T3	PLOT DATE.

VINCI Technology Centre UK Limited Stanbridge Road Leighton Buzzard Bedfordshire LU7 4QH UK

0333 5669000

info@technology-centre.co.uk www.technology-centre.co.uk

Technical Report

Title:

Wind resistance testing a Barracuda brick slip system

Report No: N950-22-18408

Technical Report

Title:

Wind resistance testing a Barracuda brick slip system

Customer:

James & Taylor Ltd,

Sixty-Two, Barwell Business Park,

Leatherhead Road, Chessington, Surrey KT9 2NY.

Issue date:

7 February 2024

VTC job no.:

TR0220-3WK2

Author(s):

D. Bennett - Technician

27

NM9 Indd

Checked by:

N. McDonald - Manager

Authorised by:

S. R. Moxon – Operations Director

Distribution:

1 copy to James & Taylor

(confidential)

1 copy to project file

This report and the results shown and any recommendations or advice made herein is based upon the information, drawings, samples and tests referred to in the report. Where this report relates to a test for which VINCI Technology Centre UK Limited is UKAS accredited, the opinions and interpretations expressed herein are outside the scope of the UKAS accreditation. We confirm that we have exercised all reasonable skill and care in the preparation of this report within the terms of this commission with the client. This approach takes into account the level of resources, manpower, testing and investigations assigned to it as part of the client agreement. We disclaim any responsibility to the client and other parties in respect of any matters outside the scope of our instruction. This report is confidential and privileged to the client, his professional advisers and VINCI Technology Centre UK Limited and we do not accept any responsibility of any nature to third parties to whom the report, or any part thereof, is made known. No such third party may place reliance upon this report. Unless specificalty assigned or transferred within the terms of the agreement, we assert and retain all copyright, and other Intellectual Property Rights, in and over the report and its contents.

VINCI Technology Centre UK Limited, Stanbridge Road, Leighton Buzzard, Bedfordshire, LU7 4QH

Registered Office, Watford. Registered No. 05640885 England.

Tel.

0333 5669000

email info@technology-centre.co.uk

web www.technology-centre.co.uk

© Technology Centre

CONTENTS

1	INTRODUCTION	4
2	SUMMARY AND CLASSIFICATION OF TEST RESULTS	5
3	DESCRIPTION OF TEST SAMPLE	6
4	TEST RIG GENERAL ARRANGEMENT	8
5	TEST SEQUENCE	9
6	TESTING	10
7	APPENDIX - DRAWINGS	21

1 INTRODUCTION

This report describes tests carried out at VINCI Technology Centre UK Limited at the request of James & Taylor Limited.

The test sample consisted of a Barracuda brick slip system supplied by James & Taylor.

The tests were carried out on 26 September 2022 and were to determine the wind resistance of the test sample. The test methods were in accordance with the CWCT Standard Test Methods for building envelopes, 2005, for:

Wind resistance – serviceability & safety.

This test report relates only to the actual sample as tested and described herein.

The results are valid only for sample(s) tested and the conditions under which the tests were conducted.

The long-term durability of the façade system is not assessed by these test methods.

VINCI Technology Centre UK Limited is accredited to ISO/IEC 17025:2017 by the United Kingdom Accreditation Service as UKAS Testing Laboratory No. 0057 for a schedule of tests. Tests listed above and marked with an asterisk are not on our schedule.

VINCI Technology Centre UK Limited is Approved Body No. 1766.

VINCI Technology Centre UK Limited is certified by BSI for:

- ISO 9001 Quality Management System,
- ISO 14001 Environmental Management System,
- ISO 45001 Occupational Health and Safety Management System.

The tests were witnessed in part by John Champion of James & Taylor.

2 SUMMARY AND CLASSIFICATION OF TEST RESULTS

The following summarises the results of the tests carried out. For full details refer to Section 6.

2.1 SUMMARY OF TEST RESULTS

TABLE 1

Date	Test number	Test description	Result
26 September 2022	1	Wind resistance – serviceability	Pass
26 September 2022	2	Wind resistance – safety	Pass
10 November 2022	3	Controlled dismantle	Pass

2.2 CLASSIFICATION

TABLE 2

Test	Standard	Classification / Declared value
Wind resistance	CWCT / BS EN 13116	±2400 pascals serviceability ±3600 pascals safety

3 DESCRIPTION OF TEST SAMPLE

3.1 GENERAL ARRANGEMENT

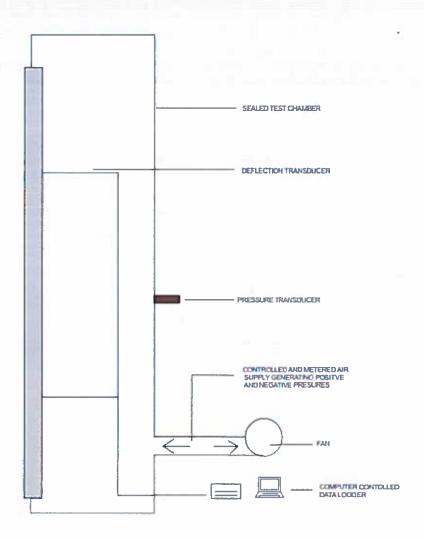
The sample was as shown in the photo below and the drawings included as an appendix to this report.

The test sample comprised 9 different brick slip types.

TABLE 3

Brick Type No.	Brick Type
1	Wienerberger Sandalwood Yellow Multi
2	Michelmersh Charnwood Light Victorian Red
3	Ibstock Leicester Red Stock
4	Ibstock Chesterton Multi Red Smooth
5	Blockley Windermere Grey Solid
6	Wienerberger Olde Ivory Stock
7	Wienerberger Smeed Dean London Stock
8	Ibstock Aldridge Anglian Red Multi Rustic
9	Michelmersh Hadley Brindle Wirecut

TEST SAMPLE ELEVATION



4 TEST RIG GENERAL ARRANGEMENT

The test sample was mounted on a rigid test rig with support steelwork designed to simulate the on-site/project conditions. The test rig comprised a well sealed chamber, fabricated from steel and plywood. A door was provided to allow access to the chamber. Representatives of James & Taylor installed the sample on the test rig. See Figure 1.

FIGURE 1

TEST RIG SCHEMATIC ARRANGEMENT

SECTION THROUGH TEST RIG

5 TEST SEQUENCE

The test sequence was as follows:

- (1) Wind resistance serviceability
- (2) Wind resistance safety
- (3) Controlled dismantle

6 TESTING

6.1 INSTRUMENTATION

6.1.1 Pressure

One static pressure tapping was provided to measure the chamber pressure and was located so that the readings were unaffected by the velocity of the air supply into or out of the chamber.

A pressure transducer, capable of measuring rapid changes in pressure to within 2% was used to measure the differential pressure across the sample.

6.1.2 Deflection

Displacement transducers were used to measure the deflection of principle framing members to an accuracy of 0.1 mm. The gauges were set normal to the sample framework at mid-span and as near to the supports of the members as possible and installed in such a way that the measurements were not influenced by the application of pressure or other loading to the sample. The gauges were located at the positions shown in Figure 2.

6.1.3 Temperature

Platinum resistance thermometers (PRT) were used to measure air temperatures to within 1°C.

6.1.4 General

Electronic instrument measurements were scanned by a computer controlled data logger, which also processed and stored the results.

All measuring instruments and relevant test equipment were calibrated and traceable to national standards.

6.2 FAN

The air supply system comprised a variable speed centrifugal fan and associated ducting and control valves to create positive and negative static pressure differentials. The fan provided essentially constant air flow at the fixed pressure for the period required by the tests and was capable of pressurising at a rate of approximately 600 pascals in one second.

6.3 PROCEDURE

6.3.1 Wind Resistance – serviceability

Three positive pressure differential pulses of 1200 pascals were applied to prepare the sample. The displacement transducers were then zeroed.

The sample was subjected to one positive pressure differential pulse from 0 to 2400 pascals to 0. The pressure was increased in four equal increments each maintained for 15 ± 5 seconds. Displacement readings were taken at each increment. Residual deformations were measured on the pressure returning to zero.

Any damage or functional defects were recorded.

Three negative pressure differential pulses of -1200 pascals were applied to prepare the sample. The displacement transducers were then zeroed.

The sample was subjected to one negative pressure differential pulse from 0 to -2400 pascals to 0. The pressure was increased in four equal increments each maintained for 15 \pm 5 seconds. Displacement readings were taken at each increment. Residual deformations were measured on the pressure returning to zero.

Any damage or functional defects were recorded.

6.3.2 Wind Resistance - safety

Three positive pressure differential pulses of 1200 pascals were applied to prepare the sample. The displacement transducers were then zeroed.

The sample was subjected to one positive pressure differential pulse from 0 to 3600 pascals to 0. The pressure was increased as rapidly as possible but not in less than 1 second and maintained for 15 ± 5 seconds. Displacement readings were taken at peak pressure. Residual deformations were measured on the pressure returning to zero.

Any damage or functional defects were recorded.

Three negative pressure differential pulses of -1200 pascals were applied to prepare the sample. The displacement transducers were then zeroed.

The sample was subjected to one negative pressure differential pulse from 0 to -3600 pascals to 0. The pressure was increased as rapidly as possible but not in less than 1 second and maintained for 15 ± 5 seconds. Displacement readings were taken at peak pressure. Residual deformations were measured on the pressure returning to zero.

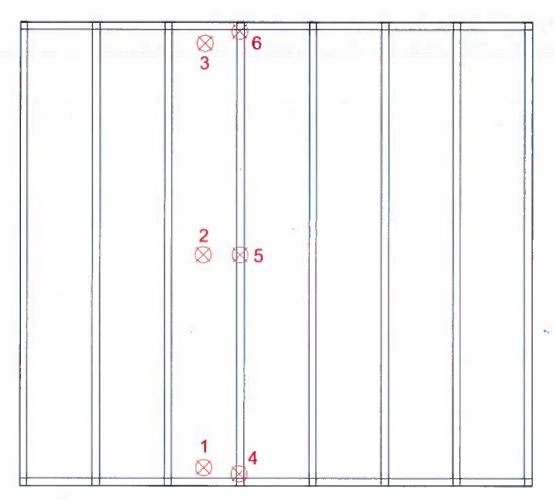

Any damage or functional defects were recorded.

FIGURE 2

DEFLECTION GAUGE LOCATIONS

Internal View

○ Deflection gauge

6.4 PASS/FAIL CRITERIA

6.4.1 Calculation of permissible deflection

Serviceability Test

TABLE 4

Gauge number	Member	Span (L) (mm)	Permissible deflection (mm)	Permissible residual deformation
2	Brick slips	2987	L/200 = 14.9	BS EN 13116: 5% of measured deflection
5	Vertical stud	2987	L/200 = 14.9	CWCT:

Safety Test

TABLE 5

Gauge number	Member	Span (L) (mm)	Permissible deflection (mm)	Permissible residual deformation
2	Brick slips	2987	п/а	L/500 = 6.0 mm
5	Vertical stud	2987	n/a	L/500 = 6.0 mm

6.5 RESULTS

Test 3 (serviceability) Date: 26 September 2022

The deflections measured during the wind resistance test, at the positions shown in Figure 2, are shown in Tables 8 and 9.

Summary:

Serviceability Test

TABLE 6

Gauge number	Member	Pressure differential (Pa)	Measured deflection (mm)	Residual deformation (mm)
2	Brick slips	2399 -2391	4.4 -7.2	0.3 -0.4
5	Vertical stud	2399 -2391	6.7 -8.1	0.4 -0.3

No damage to the test sample was observed.

Ambient temperature = 13°C Chamber temperature = 13°C

Test 4 (safety)

Date: 26 September 2022

The deflections measured during the structural safety test, at the positions shown in Figure 2, are shown in Table 10.

Summary

Safety Test

TABLE 7

Gauge number	Member	Pressure differential (Pa)	Measured deflection (mm)	Residual deformation (mm)
2	Brick slips	3591 -3604	6.9 -9.2	0.5 -0.7
5	Vertical stud	3591 -3604	10.3 -11.7	-0.4 -0.7

No damage to the sample was observed.

Ambient temperature = 14°C Chamber temperature = 14°C

TABLE 8

WIND RESISTANCE - POSITIVE SERVICEABILITY TEST RESULTS

Position	Pressure (pascals) / Deflection (mm)					
П	614	1205	1805	2399	Residual	
1	1.3	2.4	3.7	5.1	0.1	
2	2.2	4.4	7.1	10.0	0.5	
3	1.4	2.8	4.5	6.3	0.3	
4	1.0	1.9	2.8	3.7	0.1	
5 ⊠	2.3	4.6	7.5	10.7	0.5	
6	1.0	2.0	3.1	4.3	0.2	
2*	0.9	1.8	3.1	4.4	0.3	
5*	1.3	2.6	4.6	6.7	0.4	

^{*} Mid-span reading adjusted between end support readings

TABLE 9

WIND RESISTANCE - NEGATIVE SERVICEABILITY TEST RESULTS

Position	Pressure (pascals) / Deflection (mm)					
	-598	-1197	-1794	-2391	Residual	
≥1	-1.7	-3.2	-4.7	-6.5	0.1	
2	-2.8	-6.1	-10.1	-14.6	-0.6	
3	-1.5	-3.3	-5.6	-8,3	-0.6	
4	-1.1	-1.9	-2.8	-3.8	0.2	
5	-2.6	-5.4	-8.8	-12.7	-0.5	
6	-1.0	-2.0	-3.5	-5.3	-0.5	
2 *	-1.2	-2.9	-4.9	-7.2	-0.4	
5 *	-1.5	-3.4	-5.6	-8.1	-0.3	

^{*} Mid-span reading adjusted between end support readings

TABLE 10

WIND RESISTANCE - SAFETY TEST RESULTS

Position	Pressure (pascals) / Deflection (mm)				
	3591	Residual	-3604	Residual	
1	7.3	0.1	-9.5	-0.9	
2	15.3	0.8	-19.9	-1.9	
3	9.5	0.6	-11.9	-1.5	
4	5.1	-0.1	-5.2	-1.1	
5	16.1	0.6	-18.4	-2.0	
6	6.5	0.5	-8.1	-1.5	
2 *	6.9	0.5	-9.2	-0.7	
5 *	10.3	0.4	-11,7	-0.7	

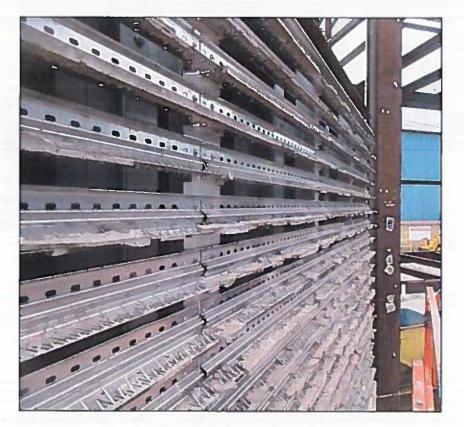
^{*} Mid-span reading adjusted between end support readings

6.6 CONTROLLED DISMANTLING

During the dismantling of the sample no discrepancies from the drawings were found.

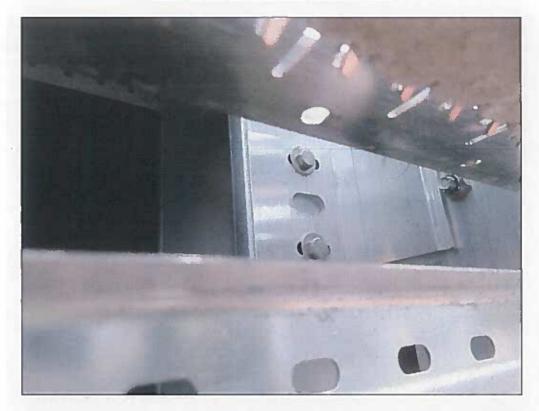
PHOTO 6137

TEST SAMPLE DURING DISMANTLE


PHOTO 6145

Page 17 of 21

TEST SAMPLE DURING DISMANTLE


PHOTO 6157

Page 18 of 21

TEST SAMPLE DURING DISMANTLE

PHOTO 6159

Page 19 of 21

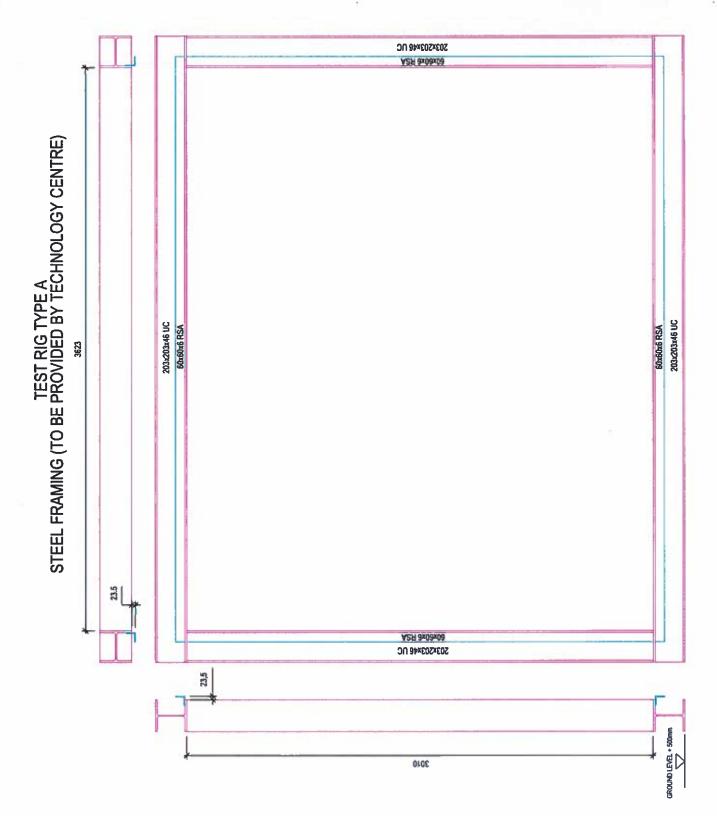
BRICK SLIPS REMOVED FROM TEST RIG

PHOTO 6181

SUPPORT FRAME REMOVED FROM TEST RIG

7 APPENDIX - DRAWINGS

The following 4 unnumbered pages are copies of James & Taylor Limited drawings numbered:


BSS-TRA-GA-001,

BSS-TRA-GA-002,

BSS-TRA-GA-003,

BSS-TRA-T3.

END OF REPORT

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

STEEL FRAMING REQUIREMENT 203/203x46 UC (AS DRAWN) 60x60x6 RSA (AS DRAWN)

OATE	P		MENT	CHECKED BY:	PLOT SIZE.	REVISION
REVISIONS	CLEMES & TAYLOR LTD	PROJECT. BRICK SLIP SYSTEM	TEST RIG TYPE A GENERAL ARRANGEMENT over 03/12/2021	DRAWN BY: JSC	scale:	DRAWING HUMBER: BSS-TRA-GA-001

C James & Taylor Lid - 2008

5:34 PM

PLOT DATE December 5, 2021

TEST RIG TYPE A METSEC BACKING WALL; STUDWORK, BASE, AND HEAD TRACK SETTING OUT/CONFIGURATION 181,25 203×203×46 UC AZA B±03±08 301,25 450 8 99 203x203x46 UC 203x203x46 UC 3602 3000 909 909 \$2 301,25 A2A 8x08x08 161,25 203×203×46 UC 2

Z86Z

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECTS AND ENGINEER'S DRAWINGS.

METSEC REQUIREMENT

150M12-75 (THEORETICAL LENGTH 2987mm) = 7 No. VERTICAL STUDS

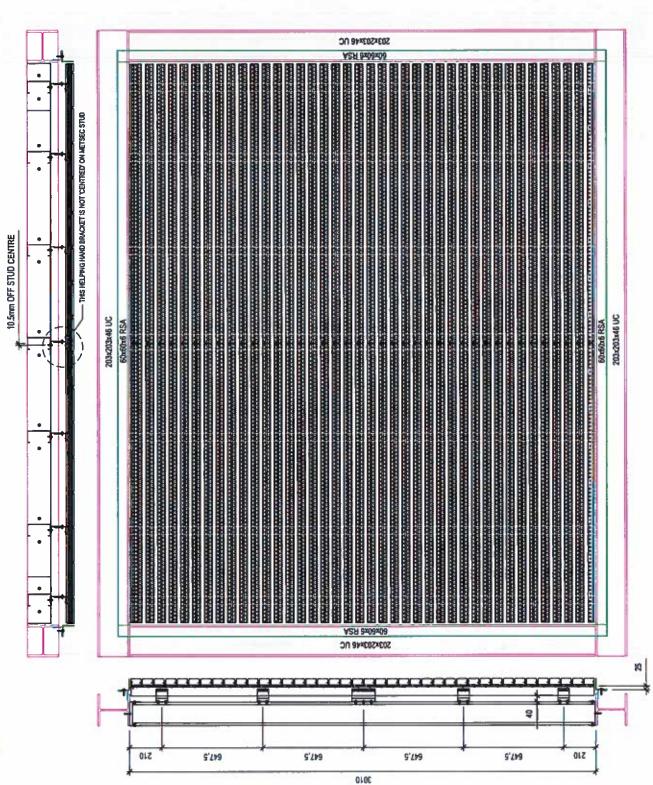
BASE TRACK 154M12-40 (THEORETICAL LENGTH 3602mm) = 1 No.

HEAD TRACK

154M16-70s (THEORETICAL LENGTH 3602mm) = 1 No.

PATE JAMES & TAYLOR LTD CLEAT

BRICK SLIP SYSTEM


GENERAL ARRANGEMENT Date 03/12/2021 TEST RIG TYPE A

CHECKED BY	JSC	PLOT SIZE	A3	REVISION
DRAWN BY:	JSC	SCALE	1:16	DRAWING NUMBER:

BSS-TRA-GA-002 PLOT DATE: January 16, 2022

C Jame & Tayme Like . 2008 6:18 PM

TEST RIG TYPE A 'HELPING HAND' BRACKET, VERTICAL SUB-STRUCTURE AND BARRACUDA RAIL SETTING OUT/CONFIGURATION

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

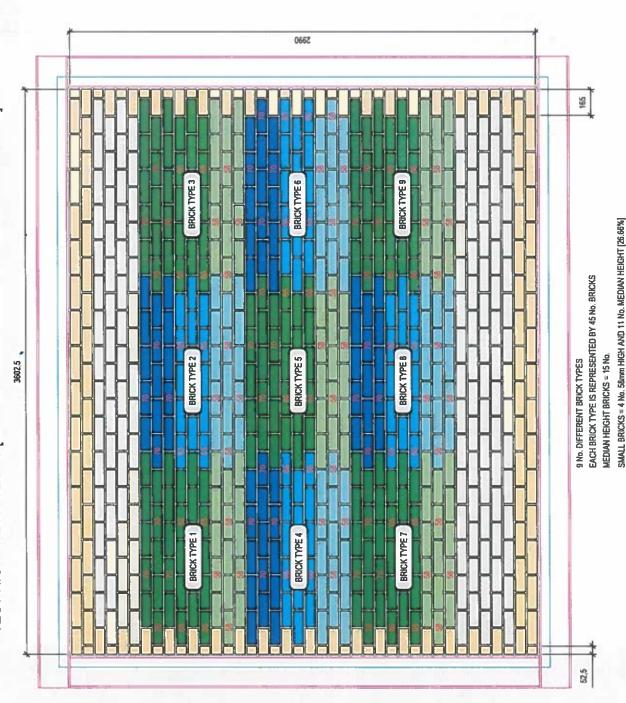
BARRACUDA HORIZONTAL RAIL REQUIREMENT

BAR-R1-1800 = 78 No. BAR-R2-1800 = 2 No.

BAR-R3-1800 = 2 No.

BARRACUDA VERTICAL RAIL REQUIREMENT BAR-VL1-2990 = 6 No. BAR-VT1-2990 = 1 No. HELPING HAND' BRACKET REQUIREMENT

Nvelope 90 (ADJUSTMENT RANGE 92mm TO 132mm) VERTICAL LOAD BEARING HELPING HAND = 7 No. RESTRAIN HELPING HAND = 28 No.


DATE				CHECKED BY	PLOT SIZE A3	REVISION
REVISIONS:	JAMES & TAYLOR LTD	PROJECT: BRICK SLIP SYSTEM	TEST RIG TYPE A GENERAL ARRANGEMENT PARE 03/12/2021	DRAWN BY: JSC	scue: 1:16	DRAWNG MURBER: BSS-TRA-GA-003

C James Toperia - 2008

6:56 PM

PLOT DATE January 16, 2022

TEST RIG TYPE A - TEST 3 [WATER PENETRATION AND WIND RESISTANCE]

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

BLOCKLEY WINDERMERE GREY SOLID

215mm LONG 'STANDARD' SLIPS = 135 No.	· SLIPS = 135 No. GER STAFFORDSHIRE
SMOOTH CREAM 215mm LONG 'STANDARD' SLIPS = 30 No.	EAM SLIPS = 30 No.
165mm LONG 'STANDARD' SLIPS = 38 No.	SLIPS = 38 No.
52mm LONG 'STANDARD' SLIPS = 38 No. 215mm LONG SLIPS WITH 'TOP' REBATE = 15 No.	SLIPS = 38 No. TOP REBATE = 15 No.
215mm LONG SLIPS WITH BOTTOM" REBATE = 15 No.	BOTTOM REBATE = 15 No.
165mm LONG SLIPS WITH TOP REBATE = 1 No. 165mm LONG SLIPS WITH 'BOTTOM' REBATE = 1 No.	TOP REBATE = 1 No. BOTTOM REBATE = 1 No.
52mm LONG SLIPS WITH TOP REBATE = 1 No.	TOP REBATE = 1 No.
AND THE PROPERTY OF THE PROPER	COTTON DEBATE - 1 No.

REVISIONS:	DATE
JAMES & TAYLOR LTD	T.
MOJECT: BRICK SLIP SYSTEM	5
TEST RIG TYPE A - TEST 3 WATER PENETRATION AND WIND RESISTANC WIE 04/12/2021	TEST 3 WATER
DRAWN BY: JSC	CHECKED BY: JSC
scue. 1:16	ROTSZE A3
DRAWNG NUMBER: BSS-TRA-T3	REVISION:

C James & Tajus (3)

5:39 PM

PLOT DATE: December 5, 2021

LARGE BRICKS = 4 No. 70mm HIGH AND 11 No. MEDIAN HEIGHT [26.66%]

VINCI Technology Centre UK Limited Stanbridge Road Leighton Buzzard Bedfordshire LU7 4QH UK

0333 5669000

info@technology-centre.co.uk www.technology-centre.co.uk

Technical Report

Title:

Impact testing of Barracuda Brick Slip System (Un-Mortared)

Report No: N950-24-18684

Technical Report

Title:

Impact Testing of Barracuda Brick Slip System (Un-Mortared).

Customer:

James & Taylor Ltd.

Sixty-Two, Barwell Business Park,

Leatherhead Road, Chessington, Surrey KT9 2NY.

Issue date:

4 March 2024

VTC job no.:

TR0220-3WK2

Author(s):

S. Bahera - Assistant Engineer

SBahera

Checked by:

N. McDonald - Manager

NM9 Incled

Authorised by:

S. R. Moxon - Operations Director

5. R. Mar

Distribution:

1 copy to James & Taylor

(confidential)

1 copy to project file

This report and the results shown and any recommendations or advice made herein is based upon the information, drawings, samples and tests referred to in the report. Where this report relates to a test for which VINCI Technology Centre UK Limited is UKAS accredited, the opinions and interpretations expressed herein are outside the scope of the UKAS accreditation. We confirm that we have exercised all reasonable skill and care in the preparation of this report within the terms of this commission with the client. This approach takes into account the level of resources, manpower, testing and investigations assigned to it as part of the client agreement. We disclaim any responsibility to the client and other parties in respect of any matters outside the scope of our instruction. This report is confidential and privileged to the client, his professional advisers and VINCI Technology Centre UK Limited and we do not accept any responsibility of any nature to third parties to whom the report, or any part thereof, is made known. No such third party may place reliance upon this report. Unless specifically assigned or transferred within the terms of the agreement, we assert and retain all copyright, and other Intellectual Property Rights, in and over the report and its contents.

VINCI Technology Centre UK Limited, Stanbridge Road, Leighton Buzzard, Bedfordshire, LU7 4QH

Registered Office, Watford. Registered No. 05640885 England.

Tel. 0

0333 5669000

email info@technology-centre.co.uk web www.technology-centre.co.uk

© Technology Centre

CONTENTS

1	INTRODUCTION	4
2	SUMMARY AND CLASSIFICATION OF TEST RESULTS	5
3	IMPACT CLASSES	6
	DESCRIPTION OF TEST SAMPLE	
5	TEST EQUIPMENT	10
6	TEST PROCEDURE	11
7	TEST RESULTS	12
Я	APPENDIX - DRAWINGS	26

1 INTRODUCTION

This certificate of test describes impact tests carried out at the request of James & Taylor Ltd. on 12th September 2023 at VINCI Technology Centre, Leighton Buzzard.

The test was carried out in accordance with CWCT TN75/76.

The test was witnessed by:

John Champion

James & Taylor Ltd.

This test report relates only to the actual sample as tested and described herein.

The results are valid only for sample(s) tested and the conditions under which the tests were conducted.

The long-term durability of the façade system is not assessed by these test methods.

VINCI Technology Centre UK Limited is accredited to ISO/IEC 17025:2017 by the United Kingdom Accreditation Service as UKAS Testing Laboratory No. 0057 for a schedule of tests. Tests listed above and marked with an asterisk are not on our schedule.

VINCI Technology Centre UK Limited is Approved Body No. 1766.

VINCI Technology Centre UK Limited is certified by BSI for:

- ISO 9001 Quality Management System,
- ISO 14001 Environmental Management System,
- ISO 45001 Occupational Health and Safety Management System.

2 SUMMARY AND CLASSIFICATION OF TEST RESULTS

Impact testing has been carried out for safety impacts only, serviceability impacts have not been carried out.

Soft body impacts

500 J Safety	
Negligible risk	

Hard body impacts

10 J	
Safety	
Low Risk	

3 IMPACT CLASSES

Note: Tables 1 is taken from CWCT TN76.

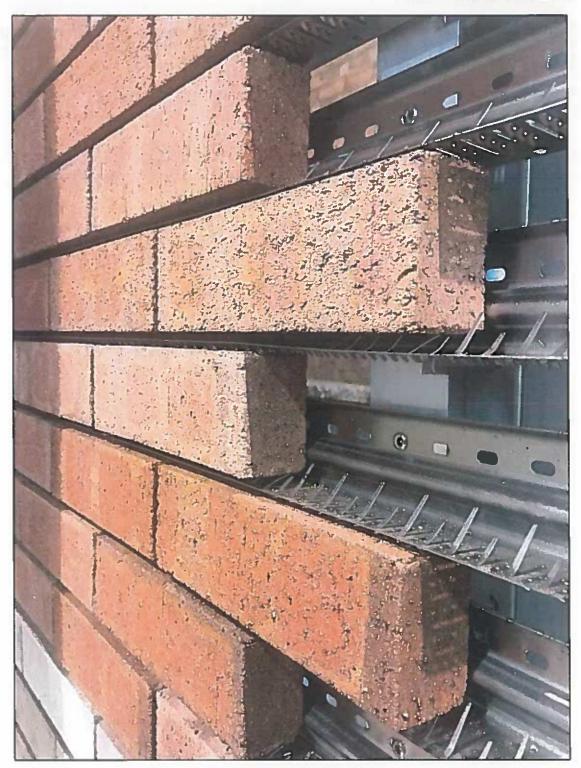
Table 1 - Classes for safety performance

Class	Explanation/examples No material dislodged during test, and No damage likely to lead to materials falling subsequent to test, and No sharp edges produced that would be likely to cause severe injury to a person during impact, and Cladding not penetrated by impactor.		
Negligible risk			
Low risk	Maximum mass of falling particle 50 g, and Maximum mass of particle that may fall subsequent to impact 50 g, and No sharp edges produced that would be likely to cause severe injury during impact.		
Moderate risk	Maximum mass of falling particle less than 500 g, and Maximum mass of particle that may fall subsequent to impact less than 500 g, and Cladding not penetrated by impact, and No sharp edges produced that would be likely to cause severe injury during impact.		
High risk	Maximum mass of falling particle greater than 500 g, or Cladding penetrated by impact, or Sharp edges produced that would be likely to cause severe injury during impact.		

4 DESCRIPTION OF TEST SAMPLE

The sample was mounted to a solid steel frame which was fixed to a concrete slab as shown in the photograph below.

PHOTO IMG-5655



TEST SAMPLE

PHOTO IMG-5358

SUPPORT BRACKET

CLOSE UP OF BRICK SLIPS

5 TEST EQUIPMENT

The soft body impactor comprised a canvas spherical/conical bag 400 mm in diameter filled with 3 mm diameter glass spheres with a total mass of 50 kg suspended from a cord at least 3 m long.

The hard body impactor was solid steel ball of 62.5 mm diameter and mass of 1.0 kg.

6 TEST PROCEDURE

6.1 SOFT BODY

The impactor almost touched the face of the sample when at rest. It was swung in a pendular movement to hit the sample normal to its face.

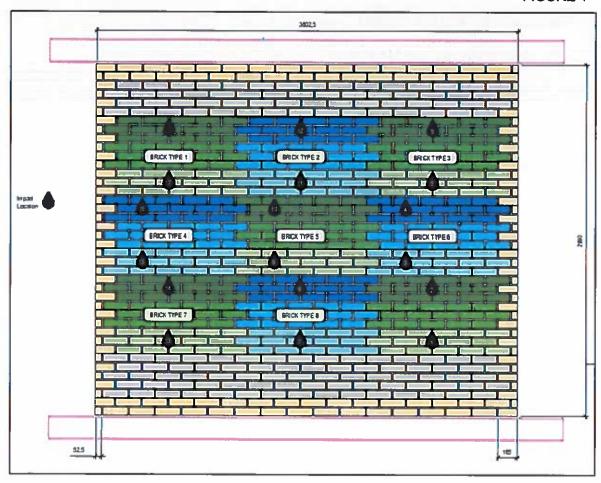
The test was performed at the locations shown in Figure 1.

The impact energies were 500 J for safety.

6.2 HARD BODY

The impactor almost touched the face of the sample when at rest. It was swung in a pendular movement to hit the sample normal to its face.

The test was performed at the locations shown in Figure 2.


The impact energies were 10 J.

7 TEST RESULTS

Test Date: 14th September 2023 Ambient temperature = 20 °C

FIGURE 1

SOFT BODY IMPACT LOCATIONS

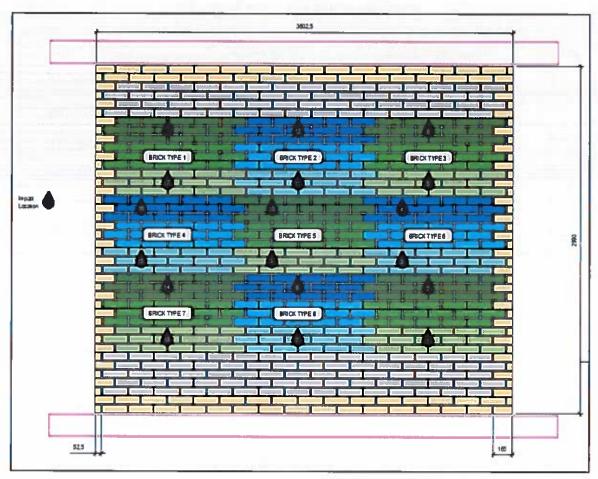


TABLE 3

SOFT BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
1	500	No damage observed Negligible	
2	500	No damage observed Negligible	
3	500	No damage observed Negligible	
4	500	No damage observed	Negligible risk
5	500	No damage observed	Negligible risk
6	500	No damage observed	Negligible risk
7	500	No damage observed	Negligible risk
8	500	No damage observed	Negligible risk
9	500	No damage observed Negligit	
10	500	No damage observed Negligible	
11	500	No damage observed Negligible	
12	500	No damage observed Negligible ri	
13	500	No damage observed Negligible	
14	500	No damage observed Negligible r	
15	500	No damage observed Negligible r	
16	500	No damage observed Negligible risk	
17	500	No damage observed	Negligible risk
18	⁻ 500	No damage observed Negligible ris	

FIGURE 2

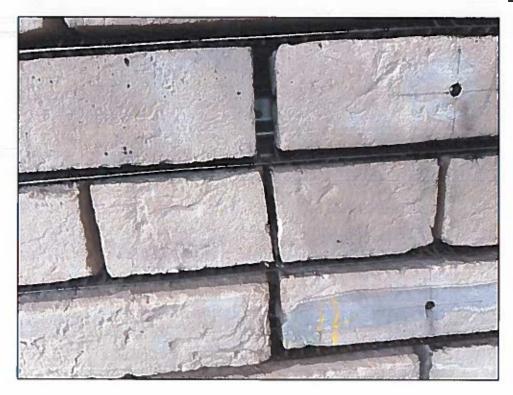
HARD BODY IMPACT LOCATIONS

TABLE 4 HARD BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
1	10	Crack through full height of tile	Low risk
2	10	Crack through full height of tile	Low risk
3	10	Crack through full height of tile. Small chip to corner of brick	Low risk
4	10	Minor indent	Negligible risk
5	10	Crack through full height of tile	Low risk
6	10	Crack through full height of tile	Low risk
7	10	Crack through full height of tile	Low risk
8	10	Crack through full height of tile. Small chip to corner of brick (4 g)	Low risk
9	10	Crack through full height of tile	Low risk
10	10	Minor indent	Negligible risk
11	10	Crack through full height of tile	Low risk
12	10	Crack through full height of tile	Low risk
13	10	Crack through full height of tile	Low risk
14	10	Crack through full height of tile	Low risk
15	10	Crack through full height of tile	Low risk
16	10	Crack through full height of tile	Low risk
17	10	Crack through full height of tile. Small chip to corner of brick	Low risk
18	10	Crack through full height of tile. Small chip to comer of brick (4 g)	Low risk

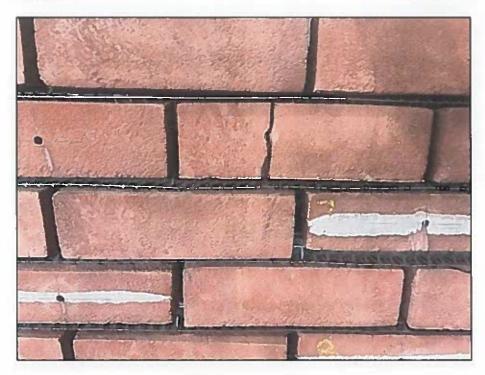
SOFT BODY IMPACTOR

HARD BODY IMPACTOR

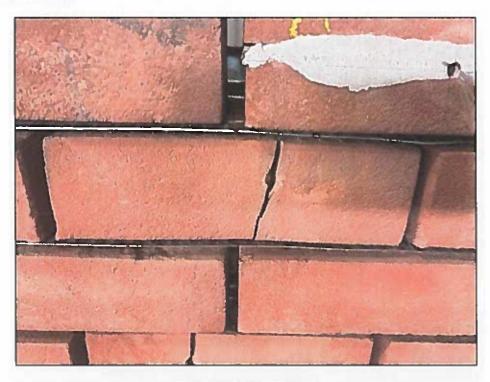


IMPACT LOCATION 1

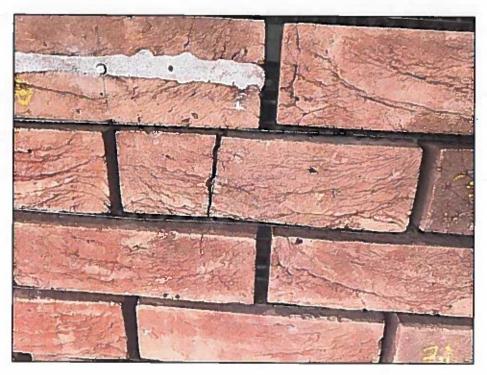
IMPACT LOCATION 2



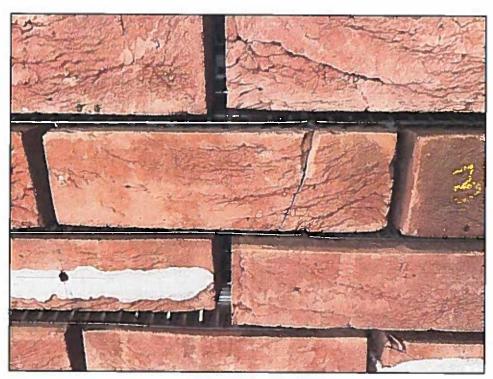
IMPACT LOCATION 3



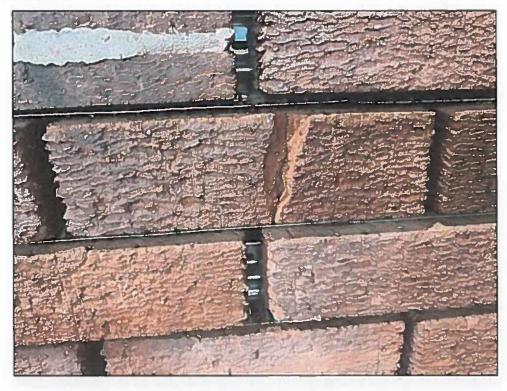
IMPACT LOCATION 5

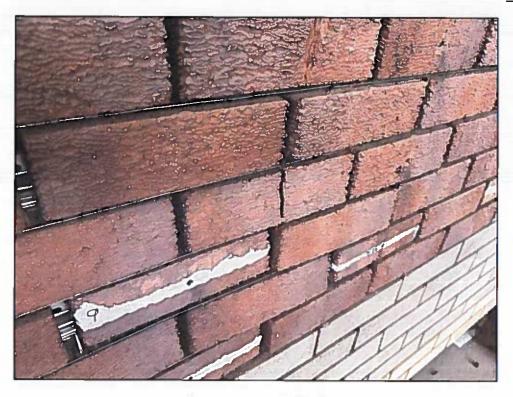


IMPACT LOCATION 6


PHOTO 9321

IMPACT LOCATION 7


IMPACT LOCATION 8

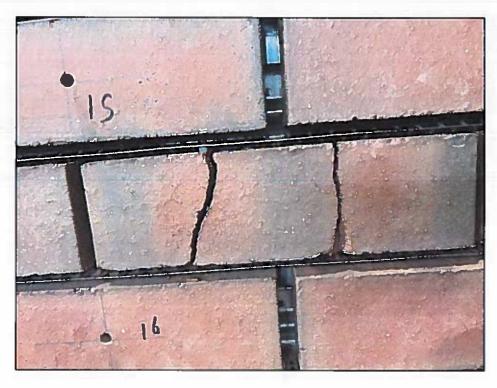

IMPACT LOCATION 9


IMPACT LOCATION 9

IMPACT LOCATION 11

IMPACT LOCATION 12

IMPACT LOCATION 13



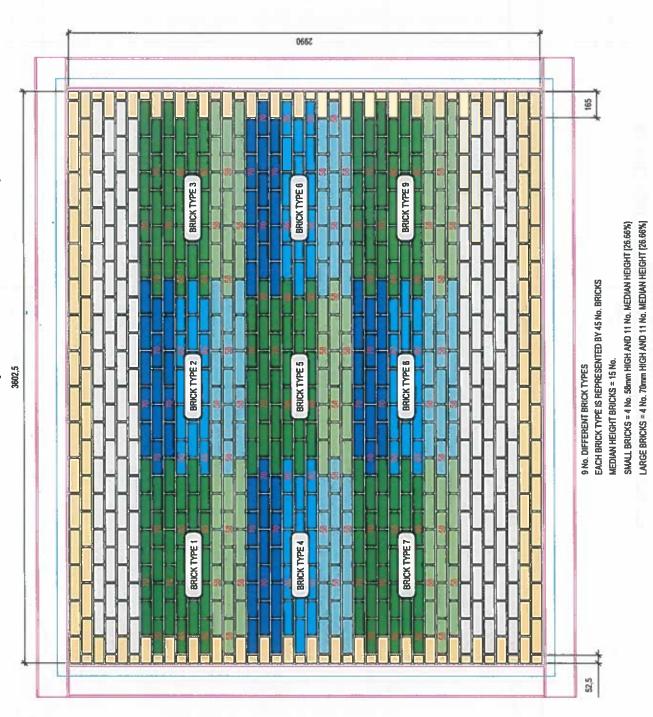
IMPACT LOCATION 14

IMPACT LOCATION 15

IMPACT LOCATION 16

IMPACT LOCATION 17

IMPACT LOCATION 18


8 APPENDIX - DRAWINGS

The following 4 unnumbered pages are copies of James & Taylor Limited drawings numbered:

- BSS-TRB-GA-001
- BSS-TRB-GA-002
- BSS-TRB-GA-003
- BSS-TRA-T1

END OF REPORT

TEST RIG TYPE A - TEST 1 [UNMORTARED BRICK PULL]

GENERAL NOTES

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

= BLOCKLEY WINDERMERE GREY SOLID

215mm LONG 'STANDARD' SLIPS = 135 No.

= WENERBERGER STAFFORDSHIRE SMOOTH CREAM
215mm LONG 'STANDARD' SLIPS = 30 No.
165mm LONG 'STANDARD' SLIPS = 38 No.
52mm LONG 'STANDARD' SLIPS = 38 No.
215mm LONG SLIPS WITH TOP' REBATE = 15 No.
215mm LONG SLIPS WITH TOP' REBATE = 15 No.
165mm LONG SLIPS WITH TOP' REBATE = 1 No.
165mm LONG SLIPS WITH TOP' REBATE = 1 No.
52mm LONG SLIPS WITH TOP' REBATE = 1 No.
52mm LONG SLIPS WITH TOP' REBATE = 1 No.
52mm LONG SLIPS WITH TOP' REBATE = 1 No.

REVISIONS	DATE
JAMES & TAYLOR LTD	
PROJECT: BRICK SLIP SYSTEM	
TEST RIG TYPE A - TEST 1 UNMORTARED BRICK PULL DATE: 04/12/2021	
Disamiler	ORECIGED BY
scale: 1:16	PLOT SIZE
ORAWNO NAMBER: RSS-TRA-T1	REVISION

(C) James & Toylor 138 - 3558

5:38 PM

PLOT DATE: December 5, 2021

TEST RIG TYPE B STEEL FRAMING (TO BE PROVIDED BY TECHNOLOGY CENTRE)

203x203x46 UC 4400

GENERAL NOTES:

SLYTY IND Barmel Eurense Pan Leatherheid Roos.
Chestagen Samer 415 EVY
T 970 END 1619 E UZ0 3178 2026. E info@envesandarka

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONLUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

STEEL FRAMING RECKUIREMENT 203x203x46 UC (AS DRAWN) 60x60x6 RSA (AS DRAWN)

JAMES & TAYLOR LTD REVISIONS

PROJECT: BRICK SLIP SYSTEM

TEST RIG TYPE B GENERAL ARRANGEMENT

03/12/2021

SC PLOT SIZE CHECKED BY: DRAWN BY: SC SCALE 1:16

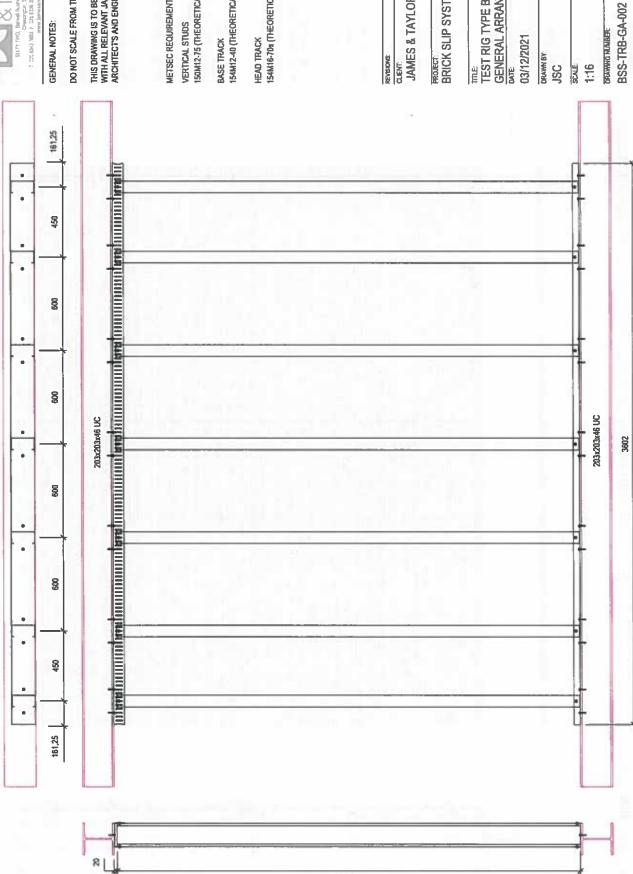
A3

RIVISION

BSS-TRB-GA-001

DRAWING MUMBER:

203x203x46 UC


GROUND LEVEL + 500mm

PLOT DATE: December 5, 2021 5:40 PM

© James 1 Toylor Lik 2008

3040

TEST RIG TYPE B METSEC BACKING WALL; STUDWORK, BASE, AND HEAD TRACK SETTING OUT/CONFIGURATION

786Z

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

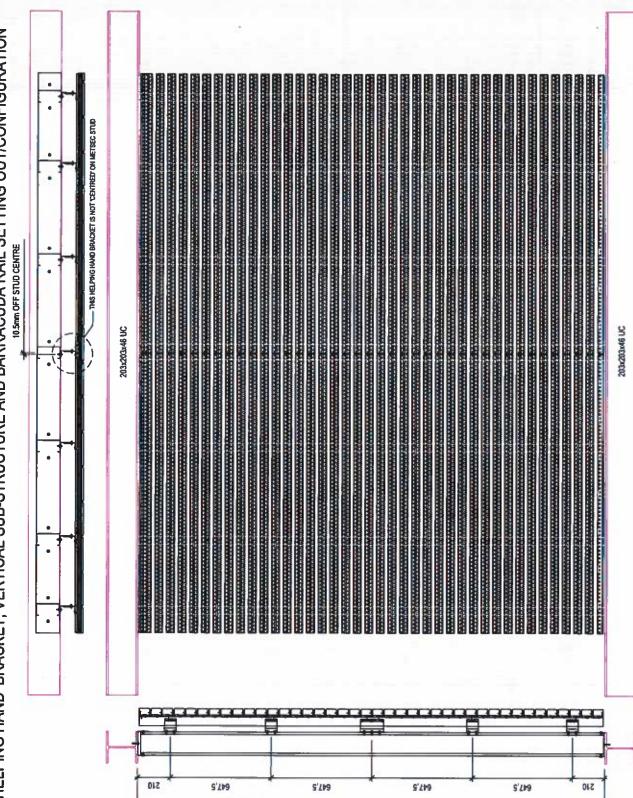
VERTICAL STUDS 150M12-75 (THEORETICAL LENGTH 2987mm) = 7 No. METSEC REQUIREMENT

BASE TRACK 154M12-40 (THEORETICAL LENGTH 3602mm) = 1 No.

154M16-70s (THEORETICAL LENGTH 3602mm) = 1 No.

JAMES & TAYLOR LTD

DATE


PROJECT SLIP SYSTEM

GENERAL ARRANGEMENT
DATE: 03/12/2021 TEST RIG TYPE B

CHECKET BY	JSC	PLOT SIZE	A3	REVIS
PIDAMA/RV:	JSC	SCALE	1:16	ORAWING NUMBER:

© James & Tayor List - 2008 PLOT DATE: December 5, 2021 5:42 PM

TEST RIG TYPE B "HELPING HAND" BRACKET, VERTICAL SUB-STRUCTURE AND BARRACUDA RAIL SETTING OUT/CONFIGURATION

3010

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

Barracuda Horizontal Rali, requirement Bar-R1-1800 = 78 No. Bar-R2-1800 = 2 No. Bar-R3-1800 = 2 No.

BARRACUDA VERTICAL RAIL REQUIREMENT

BAR-VI.1-2990 = 6 No. BAR-VT1-2990 = 1 No. HELPING HAND BRACKET REQUIREMENT
NVBORG 90 (ADJUSTMENT RANGE 92mm TO 132mm)
VERTICAL LOAD BEARING HELPING HAND = 7 No.
RESTRAIN HELPING HAND * 28 No.

GLEDIT:
JAMES & TAYLOR LTD

BRICK SLIP SYSTEM

TEST RIG TYPE B
GENERAL ARRANGEMENT
one
03/12/2021

JSC JSC JSC SCALE. PLOT SIZE 1:16 A3 DRAWING MURBER. REVISION:

P.OT DATE.
December 5, 2021 5:45 PM © home 1 Tayou La 2009

BSS-TRB-GA-003

VINCI Technology Centre UK Limited Stanbridge Road Leighton Buzzard Bedfordshire LU7 4QH UK

0333 5669000

info@technology-centre.co.uk www.technology-centre.co.uk

Technical Report

Title:

Impact resistance testing of the Barracuda brick slip system

Report No: N950-22-18403

Technical Report

Title:

Impact resistance testing of the Barracuda brick slip system

Customer:

James & Taylor Ltd,

Sixty-Two, Barwell Business Park,

Leatherhead Road, Chessington, Surrey KT9 2NY.

Issue date:

7 February 2024

VTC job no.:

TR0220-3WK2

Author(s):

D. Bennett - Technician

27

Checked by:

N. McDonald – Manager

Authorised by:

S. R. Moxon – Operations Director

Distribution:

1 copy to James & Taylor

(confidential)

1 copy to project file

This report and the results shown and any recommendations or advice made herein is based upon the information, drawings, samples and tests referred to in the report. Where this report relates to a test for which VINCI Technology Centre UK Limited is UKAS accredited, the opinions and interpretations expressed herein are outside the scope of the UKAS accreditation. We confirm that we have exercised all reasonable skill and care in the preparation of this report within the terms of this commission with the client. This approach takes into account the level of resources, manpower, testing and investigations assigned to it as part of the client agreement. We disclaim any responsibility to the client and other parties in respect of any matters outside the scope of our instruction. This report is confidential and privileged to the client, his professional advisers and VINCI Technology Centre UK Limited and we do not accept any responsibility of any nature to third parties to whom the report, or any part thereof, is made known. No such third party may place reliance upon this report. Unless specifically assigned or transferred within the terms of the agreement, we assert and retain all copyright, and other Intellectual Property Rights, in and over the report and its contents.

VINCI Technology Centre UK Limited, Stanbridge Road, Leighton Buzzard, Bedfordshire, LU7 4QH

Registered Office, Watford. Registered No. 05640885 England.

Tel. 0333 5669000

email info@technology-centre.co.ukweb www.technology-centre.co.uk

© Technology Centre

CONTENTS

1	INTRODUCTION	4
2	CLASSIFICATION OF TEST RESULTS	5
3	DESCRIPTION OF TEST SAMPLE	6
4	IMPACTORS	8
5	PROCEDURES	g
6	PASS/FAIL CRITERIA	10
7	TEST RESULTS	12
8	APPENDIX - DRAWINGS	61

1 INTRODUCTION

This report describes tests carried out at VINCI Technology Centre UK Limited at the request of James & Taylor Limited.

The test sample consisted of a brick slip system supplied by James & Taylor.

The tests were carried out on 19 October 2022 and were to determine the impact resistance of the test sample. The test methods were in accordance with the CWCT Standard Test Methods TN 75/76.

This test report relates only to the actual sample as tested and described herein.

The results are valid only for sample(s) tested and the conditions under which the tests were conducted.

The long-term durability of the façade system is not assessed by these test methods.

VINCI Technology Centre UK Limited is accredited to ISO/IEC 17025:2017 by the United Kingdom Accreditation Service as UKAS Testing Laboratory No. 0057 for a schedule of tests. Tests listed above and marked with an asterisk are not on our schedule.

VINCI Technology Centre UK Limited is Approved Body No. 1766.

VINCI Technology Centre UK Limited is certified by BSI for:

- ISO 9001 Quality Management System,
- ISO 14001 Environmental Management System,
- ISO 45001 Occupational Health and Safety Management System.

The tests were witnessed by John Champion of James & Taylor.

2 CLASSIFICATION OF TEST RESULTS

TABLE '

Test	Standard	Classification / Declared value
Impact resistance	CWCT TN76	Soft body
	-	Class 1 – serviceability/120 J Negligible risk – safety/350 J & 500 J
		<u>Hard body</u>
		Class 1 – serviceability/3 J, 6 J & 10 J Negligible risk – safety/3 J & 10 J

3 DESCRIPTION OF TEST SAMPLE

3.1 GENERAL ARRANGEMENT

The sample was as shown in the photo below and the drawings included as an appendix to this report.

The test sample was mounted on a rigid test rig with support steelwork designed to simulate the on-site/project conditions. Representatives of James & Taylor installed the sample on the test rig.

The test sample comprised 9 different brick slip types.

TABLE 2

Brick Types Selected for Independent Testing			
Brick Type No.	Brick Type		
1	Wienerberger Sandalwood Yellow Multi		
2	Michelmersh Charnwood Light Victorian Red		
3	Ibstock Leicester Red Stock		
4	Ibstock Chesterton Multi Red Smooth		
5	Blockley Windermere Grey Solid		
6	Wienerberger Olde Ivory Stock		
7	Wienerberger Smeed Dean London Stock		
8	Ibstock Aldridge Anglian Red Multi Rustic		
9	Michelmersh Hadley Brindle Wirecut		

TEST SAMPLE ELEVATION

4 IMPACTORS

4.1 SOFT BODY

The soft body impactor shall comprise a canvas spherical/conical bag 400 mm in diameter filled with 3 mm diameter glass spheres with a total mass of approximately 50 kg suspended from a cord at least 3 m long.

PHOTO 4016

4.2 HARD BODY

The hard body impactor was a solid steel ball of 50 mm or 62.5 mm diameter and approximate mass of 0.5 kg or 1.0 kg.

PHOTO 4047

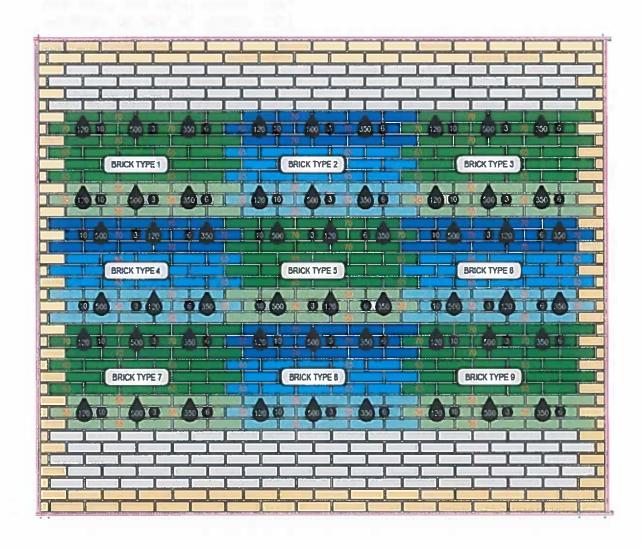
HARD BODY IMPACTOR

Page 8 of 61

5 PROCEDURES

5.1 SOFT BODY

The impactor almost touched the face of the sample when at rest. It was swung in a pendular movement to hit the sample normal to its face. The test was performed at the locations shown in Figure 1. The impact energies were 120 J for serviceability and 350 J and 500 J for safety.


5.2 HARD BODY

The impactor almost touched the face of the sample when at rest. It was swung in a pendular movement to hit the sample normal to its face. The test was performed at the locations shown in Figure 1. The impact energies were 3 J, 6 J and 10 J for serviceability and 3 J and 10 J for safety.

FIGURE 1

IMPACT TEST LOCATIONS

External View

6 PASS/FAIL CRITERIA

Note: Tables 1 to 2 are taken from CWCT TN76.

Table 1 - Classes for serviceability performance

Class	Definition	Explanation/Examples	
1	No damage.	No damage visible from 1m, and Any damage visible from closer than 1m unlikely to lead to significant deterioration.	
2	Surface damage of an aesthetic nature which is unlikely to require remedial action.		
		Any damage visible from closer than 5m unlikely to lead to significant deterioration.	
3	Damage that may require remedial action or replacement of components to maintain appearance or long term performance but does not require immediate action.	Dents or distortion of panels visible from more than 5m, or Spalling of edges of panels of brittle materials, or Damage to finishes that may lead to deterioration of the substrate.	
4	Damage requiring immediate action to maintain appearance or performance.	Significant cracks in brittle materials e.g. cracks that may lead to parts of tile falling away subsequent to test, or	
	Remedial action may include replacement of a panel but does not require dismantling or replacement of supporting structure.	Fracture of panels causing significant amounts of material to fall away during test.	
5	Damage requiring more extensive replacement than 4.	Buckling of support rails.	

Table 2 - Classes for safety performance

Class	Explanation/examples	
Negligible risk	No material dislodged during test, and No damage likely to lead to materials falling subsequent to test, and No sharp edges produced that would be likely to cause severe injury to a person during impact, and Cladding not penetrated by impactor.	
Low risk	Maximum mass of falling particle 50g, and Maximum mass of particle that may fall subsequent to impact 50g, and No sharp edges produced that would be likely to cause severe injury during impact.	
Moderate risk	Maximum mass of falling particle less than 500g, and Maximum mass of particle that may fall subsequent to impact less than 500g, and Cladding not penetrated by impact, and No sharp edges produced that would be likely to cause severe injury during impact.	
High risk	Maximum mass of falling particle greater than 500g, or Cladding penetrated by impact, or Sharp edges produced that would be likely to cause severe injury during impact.	

7 TEST RESULTS

Test Date

Date: 19 October 2022

Ambient temperature = 17°C

7.1 BRICK TYPE 1 IMPACT TEST RESULTS

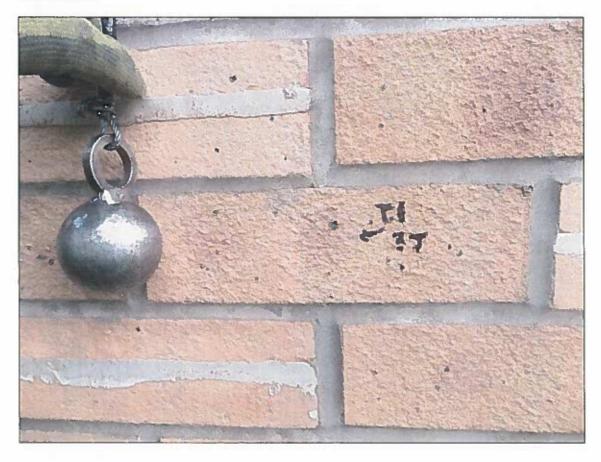
TABLE 3

SOFT BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
Upper left	120 x 3	No visible damage	Class 1
Upper right	350	No visible damage	Negligible risk
Upper centre	500	No visible damage	Negligible risk
Lower left	120 x 3	No visible damage	Class 1
Lower right	350	No visible damage	Negligible risk
Lower centre	500	No visible damage	Negligible risk

TABLE 4

HARD BODY IMPACT TEST RESULTS


Location	Impact energy (J)	Observations	Classification
Upper centre	3	No visible damage	Class 1/Negligible risk
Upper right	6	Small mark	Class 1
Upper left	10	Small mark	Class 1/Negligible risk
Lower centre	3	No visible damage	Class 1/Negligible risk
Lower right	6	Small mark	Class 1
Lower left	10	Small mark	Class 1/Negligible risk

BRICK TYPE 1 AFTER IMPACT TESTS

PHOTO 4047

3 J HARD BODY IMPACT

PHOTO 4045

Page 14 of 61

6 J HARD BODY IMPACT

PHOTO 4056

Page 15 of 61

7.2 BRICK TYPE 2 IMPACT TEST RESULTS

TABLE 5

SOFT BODY IMPACT TEST RESULTS

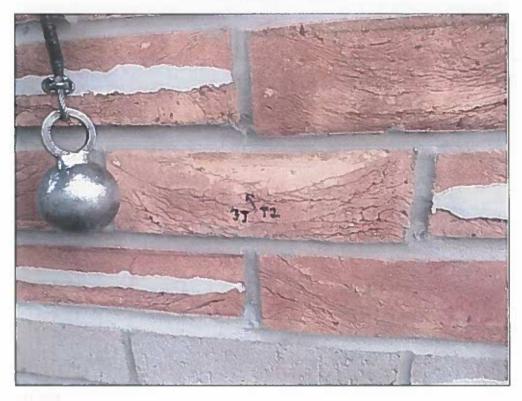
Location	Impact energy (J)	Observations	Classification
Upper left	120 x 3	No visible damage	Class 1
Upper right	350	No visible damage	Negligible risk
Upper centre	500	No visible damage	Negligible risk
Lower left	120 x 3	No visible damage	Class 1
Lower right	350	No visible damage	Negligible risk
Lower centre	500	No visible damage	Negligible risk

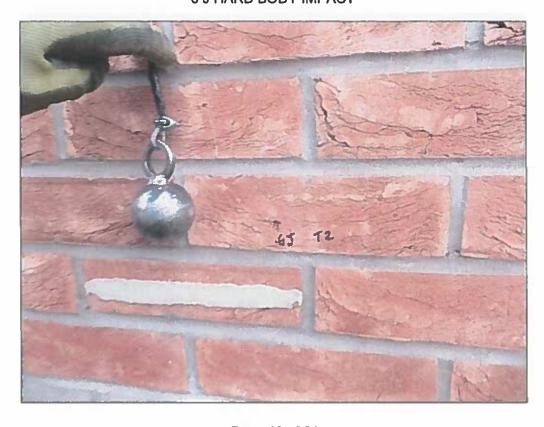
TABLE 6

HARD BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
Upper centre	3	Small mark	Class 1/Negligible risk
Upper right	6	Small mark	Class 1
Upper left	10	Small mark	Class 1/Negligible risk
Lower centre	3	Small mark	Class 1/Negligible risk
Lower right	6	Small mark	Class 1
Lower left	10	Small mark	Class 1/Negligible risk

BRICK TYPE 2 AFTER IMPACT TESTS


PHOTO 4036


Page 18 of 61

3 J HARD BODY IMPACT

PHOTO 4034

Page 19 of 61

6 J HARD BODY IMPACT

PHOTO 4058

Page 20 of 61

7.3 BRICK TYPE 3 IMPACT TEST RESULTS

TABLE 7

SOFT BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
Upper left	120 x 3	No visible damage	Class 1
Upper right	350	No visible damage	Negligible risk
Upper centre	500	No visible damage	Negligible risk
Lower left	120 x 3	No visible damage	Class 1
Lower right	350	No visible damage	Negligible risk
Lower centre	500	No visible damage	Negligible risk

TABLE 8

HARD BODY IMPACT TEST RESULTS

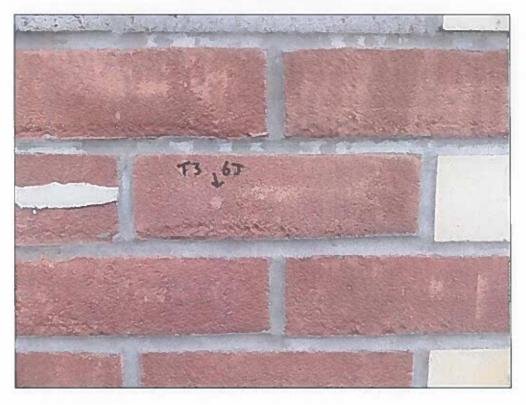
Location	Impact energy (J)	Observations	Classification
Upper centre	3	Small mark	Class 1/Negligible risk
Upper right	6	Small mark	Class 1
Upper left	10	Small mark	Class 1/Negligible risk
Lower centre	3	Small mark	Class 1/Negligible risk
Lower right	6	Small mark	Class 1
Lower left	10	Small mark	Class 1/Negligible risk

BRICK TYPE 3 AFTER IMPACT TESTS

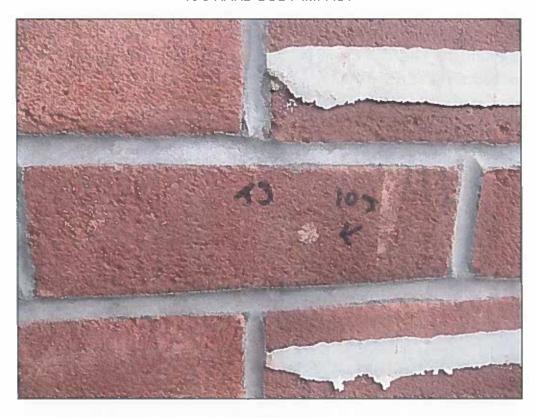
PHOTO 4025

3 J HARD BODY IMPACT

PHOTO 4023



Page 24 of 61



HOTO 4024

6 J HARD BODY IMPACT

PHOTO 4066

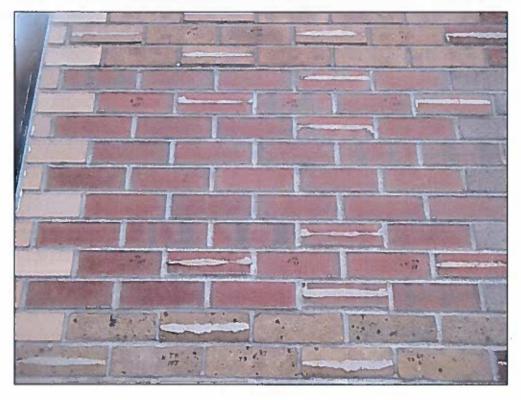
Page 25 of 61

7.4 BRICK TYPE 4 IMPACT TEST RESULTS

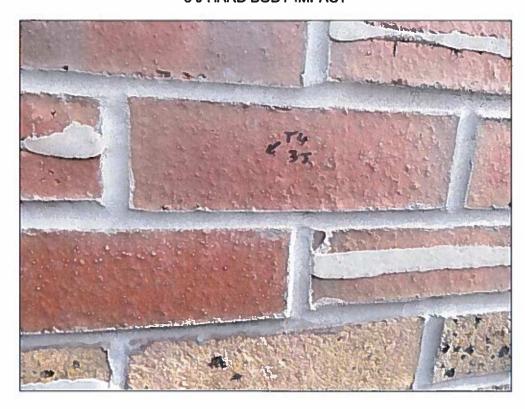
TABLE 9

SOFT BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
Upper centre	120 x 3	No visible damage	Class 1
Upper right	350	No visible damage	Negligible risk
Upper left	500	No visible damage	Negligible risk
Lower centre	120 x 3	No visible damage	Class 1
Lower right	350	No visible damage	Negligible risk
Lower left	500	No visible damage	Negligible risk

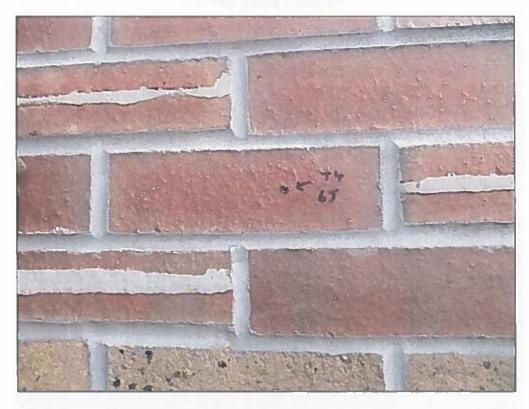

TABLE 10

HARD BODY IMPACT TEST RESULTS


Location	Impact energy (J)	Observations	Classification	
Upper centre	3	No visible damage	Class 1/Negligible risk	
Upper right	6	No visible damage	Class 1	
Upper left	10	Small mark	Class 1/Negligible risk	
Lower centre	3	No visible damage	Class 1/Negligible risk	
Lower right	6	No visible damage	Class 1	
Lower left	10	Small mark	Class 1/Negligible risk	

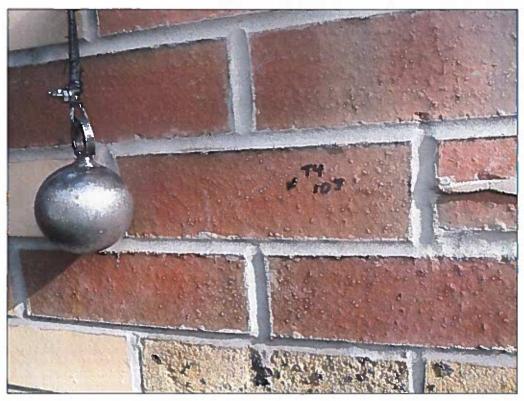
BRICK TYPE 4 AFTER IMPACT TESTS

PHOTO 4048


Page 28 of 61

3 J HARD BODY IMPACT

PHOTO 4044


Page 29 of 61

6 J HARD BODY IMPACT

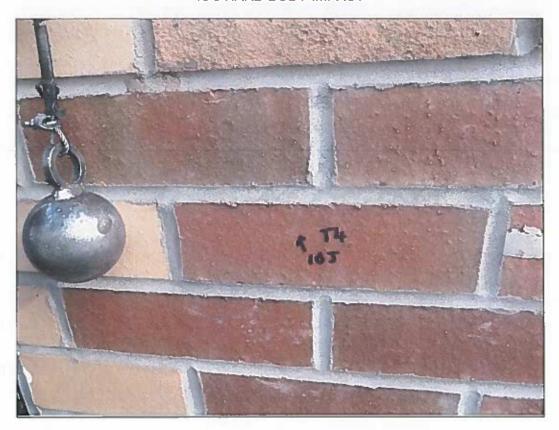


PHOTO 4054

Page 30 of 61

7.5 BRICK TYPE 5 IMPACT TEST RESULTS

TABLE 11

SOFT BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
Upper centre	120 x 3	No visible damage	Class 1
Upper right	350	No visible damage	Negligible risk
Upper left	500	No visible damage	Negligible risk
Lower centre	120 x 3	No visible damage	Class 1
Lower right	350	No visible damage	Negligible risk
Lower left	500	No visible damage	Negligible risk

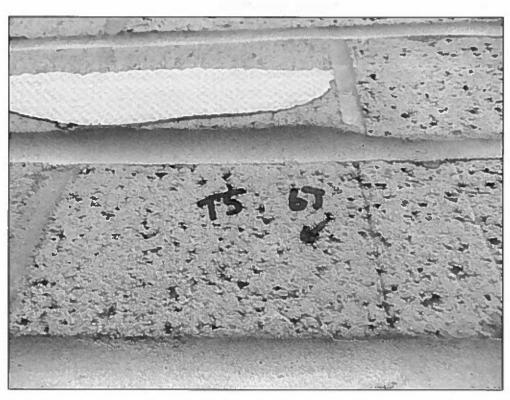
TABLE 12

HARD BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
Upper centre	3	Small mark	Class 1/Negligible risk
Upper right	6	Small mark	Class 1
Upper left	10	Small chip	Class 1/Negligible risk
Lower centre	3	Small mark	Class 1/Negligible risk
Lower right	6	Small mark	Class 1
Lower left	10	Small mark	Class 1/Negligible risk

BRICK TYPE 5 AFTER IMPACT TESTS

PHOTO 4038



3 J HARD BODY IMPACT


PHOTO 4032

Page 34 of 61

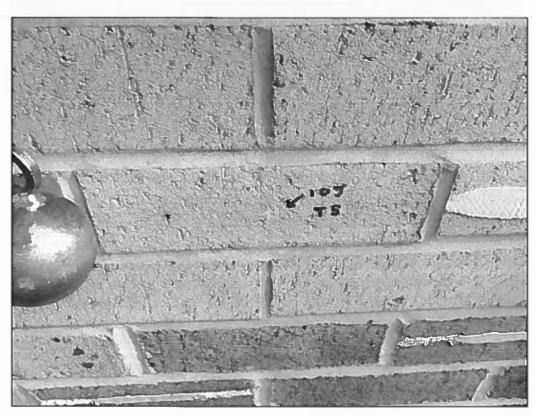

6 J HARD BODY IMPACT

PHOTO 4060

7.6 BRICK TYPE 6 IMPACT TEST RESULTS

TABLE 13

SOFT BODY IMPACT TEST RESULTS

Location	impact energy (J)	Observations	Classification
Upper centre	120 x 3	No visible damage	Class 1
Upper right	350	No visible damage	Negligible risk
Upper left	500	No visible damage	Negligible risk
Lower centre	120 x 3	No visible damage	Class 1
Lower right	350	No visible damage	Negligible risk
Lower left	500	No visible damage	Negligible risk

TABLE 14

HARD BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
Upper centre	3	Small mark	Class 1/Negligible risk
Upper right	6	Small mark	Class 1
Upper left	10	Small mark	Class 1/Negligible risk
Lower centre	3	Small mark	Class 1/Negligible risk
Lower right	6	Small mark	Class 1
Lower left	10	Small mark	Class 1/Negligible risk

BRICK TYPE 6 AFTER IMPACT TESTS



PHOTO 4027

3 J HARD BODY IMPACT

PHOTO 4021

Page 39 of 61

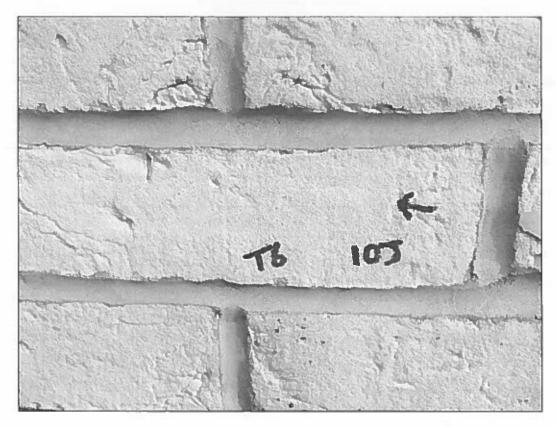

6J HARD BODY IMPACT

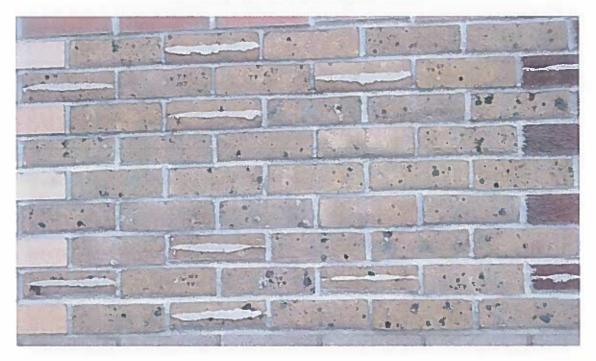
PHOTO 4068

7.7 BRICK TYPE 7 IMPACT TEST RESULTS

TABLE 15

SOFT BODY IMPACT TEST RESULTS

Location Impact energy (J)		Observations	Classification	
Upper left	120 x 3	No visible damage	Class 1	
Upper right	350	350 No visible damage Ne		
Upper centre	500	No visible damage Negligible		
Lower left	120 x 3	No visible damage	Class 1	
Lower right	350	No visible damage Negligib		
Lower centre 500		No visible damage	Negligible risk	


TABLE 16

HARD BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
Upper centre	3	Small mark	Class 1/Negligible risk
Upper right	6	Small mark	Class 1
Upper left	10	Small mark	Class 1/Negligible risk
Lower centre	3	Small mark	Class 1/Negligible risk
Lower right	6	Smail mark	Class 1
Lower left	10	Small mark	Class 1/Negligible risk

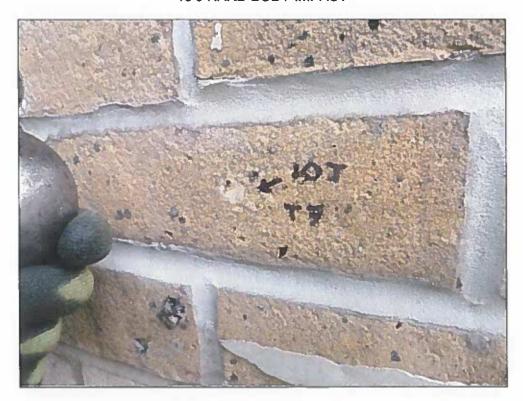
BRICK TYPE 7 AFTER IMPACT TESTS



PHOTO 4049

3 J HARD BODY IMPACT

PHOTO 4042



6 J HARD BODY IMPACT

PHOTO 4052

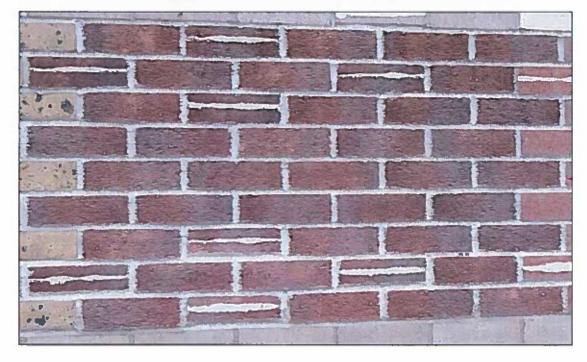
Page 45 of 61

7.8 BRICK TYPE 8 IMPACT TEST RESULTS

TABLE 17

SOFT BODY IMPACT TEST RESULTS

Location Impact energy (J)		Observations	Classification		
Upper left	120 x 3	No visible damage	Class 1		
Upper right	350	No visible damage	Negligible risk		
Upper centre	500 No visible damage N		Negligible risk		
Lower left	120 x 3	No visible damage	Class 1		
Lower right	350	No visible damage	Negligible risk		
Lower centre 500		No visible damage	Negligible risk		

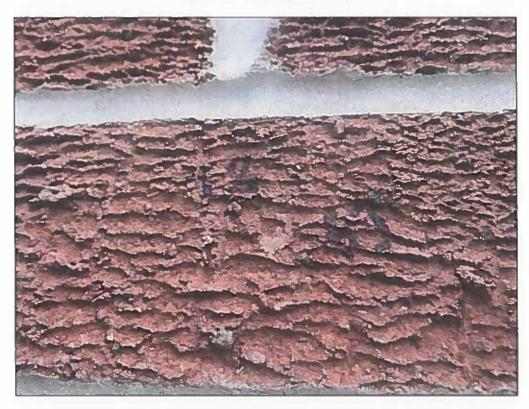

TABLE 18

HARD BODY IMPACT TEST RESULTS

Location	Impact energy (J)	Observations	Classification
Upper centre	3	Small mark	Class 1/Negligible risk
Upper right	6	Small mark	Class 1
Upper left	10	No visible damage	Class 1/Negligible risk
Lower centre	3	Small mark	Class 1/Negligible risk
Lower right	6	Small mark	Class 1
Lower left	10	No visible damage	Class 1/Negligible risk

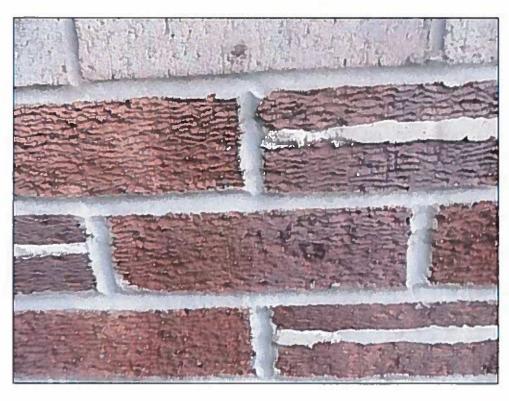
BRICK TYPE 8 AFTER IMPACT TESTS

PHOTO 4040



3 J HARD BODY IMPACT

PHOTO 4030


Page 49 of 61

6 J HARD BODY IMPACT

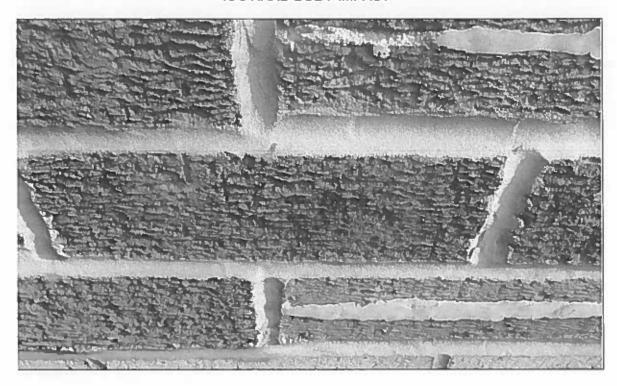


PHOTO 4063

Page 50 of 61

7.9 BRICK TYPE 9 IMPACT TEST RESULTS

TABLE 19

SOFT BODY IMPACT TEST RESULTS

Location	Impact energy (J) Observations		Classification
Upper left	120 x 3	No visible damage	Class 1
Upper right	350	No visible damage	Negligible risk
Upper centre	500	No visible damage	Negligible risk
Lower left	120 x 3	No visible damage	Class 1
Lower right	350	No visible damage	Negligible risk
Lower centre	500	No visible damage	Negligible risk

TABLE 20

HARD BODY IMPACT TEST RESULTS

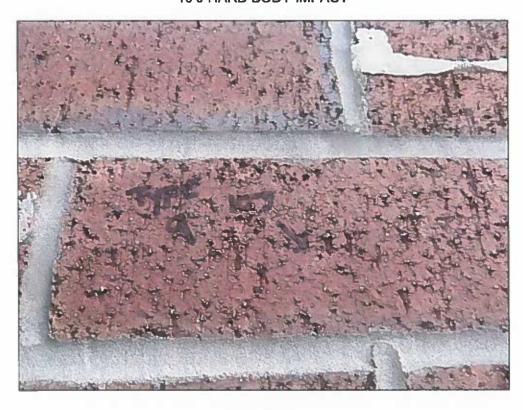
Location	Impact energy (J)	Observations	Classification
Upper centre	3	Small mark	Class 1/Negligible risk
Upper right	6	Small mark	Class 1
Upper left	10	Small mark	Class 1/Negligible risk
Lower centre	3	Small mark	Class 1/Negligible risk
Lower right	6	Small mark	Class 1
Lower left	10	Small mark	Class 1/Negligible risk

BRICK TYPE 9 AFTER IMPACT TESTS

PHOTO 4018

3 J HARD BODY IMPACT

PHOTO 4019


Page 54 of 61

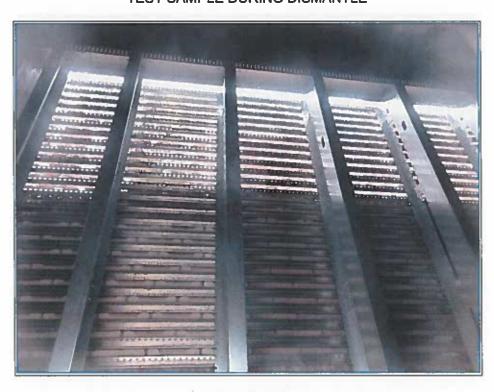
6 J HARD BODY IMPACT

PHOTO 4071

Page 55 of 61

7.10 CONTROLLED DISMANTLING

During the dismantling of the sample no discrepancies from the drawings were found.


PHOTO 6137

TEST SAMPLE DURING DISMANTLE

PHOTO 6145

TEST SAMPLE DURING DISMANTLE

Page 57 of 61

TEST SAMPLE DURING DISMANTLE

PHOTO 6157

TEST SAMPLE DURING DISMANTLE

Page 58 of 61

TEST SAMPLE DURING DISMANTLE

PHOTO 6159

TEST SAMPLE DURING DISMANTLE

Page 59 of 61

BRICK SLIPS REMOVED FROM TEST RIG

PHOTO 6181

SUPPORT FRAME REMOVED FROM TEST RIG

8 APPENDIX - DRAWINGS

The following	ng 4 unnumbe	ered pages ar	e copies of	James & Taylo	or Limited drawing	s numbered

BSS-TRA-GA-001,

BSS-TRA-GA-002,

BSS-TRA-GA-003,

BSS-TRA-T4-Rev B.

END OF REPORT

203x203x46 UC A2A axoaxoa TEST RIG TYPE A STEEL FRAMING (TO BE PROVIDED BY TECHNOLOGY CENTRE) 203x203x46 UC 203x203x46 UC 60x60x6 RSA 60x60x6 RSA 3623 23.5 A2A 3x03x03 203x203x46 UC 23,5 GROUND LEVEL + 500mm 3010

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

STEEL FRAMING REQUIREMENT

S DRAWN) DRAWN)	
203/2031/46 UC (AS DRAWN) 60x60x6 RSA (AS DRAWN)	

REVISIONS	DATE
CLEATES & TAYLOR LTD	
PROJECT: BRICK SLIP SYSTEM	Alexander of the second
TIEST RIG TYPE A GENERAL ARRANGEMENT DATE	
03/12/2021	
DRAWN BY: JSC	JSC
scue: 1:16	PLOT SUZE
DRAWING NUMBER: BSS-TRA-GA-001	REVISION.

C have & Topic La 2000

5:34 PM

PLOT DATE: December 5, 2021

TEST RIG TYPE A METSEC BACKING WALL; STUDWORK, BASE, AND HEAD TRACK SETTING OUT/CONFIGURATION 181,25 203×203×46 UC A29 8x08x08 301,25 8 8 9 203x203x46 UC 203x203x46 UC 3602 3000 9 8 450 301,25 **GONGONG RSA** 161,25 203×203×46 UC 2

7862

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

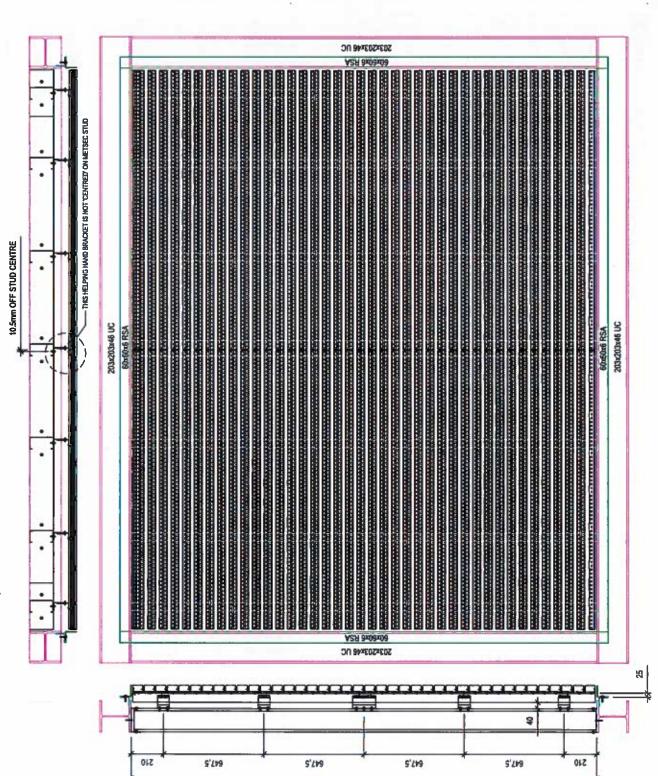
150M12-75 (THEORETICAL LENGTH 2987mm) = 7 No. METSEC REQUIREMENT VERTICAL STUDS

BASE TRACK 154M12-40 (THEORETICAL LENGTH 3602mm) = 1 No.

154M16-70s (THEORETICAL LENGTH 3802mm) = 1 No.

DATE JAMES & TAYLOR LTD

GENERAL ARRANGEMENT TEST RIG TYPE A


03/12/2021

BRICK SLIP SYSTEM

JSC PLOT SUZE A3 CHECKED BY: EVISION BSS-TRA-GA-002 DRAWN BY 1:16 SC SCALE

(C) Amen's Saper Last 2009 6:18 PM PLOT DATE: January 16, 2022

TEST RIG TYPE A 'HELPING HAND' BRACKET, VERTICAL SUB-STRUCTURE AND BARRACUDA RAIL SETTING OUT/CONFIGURATION

3010

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

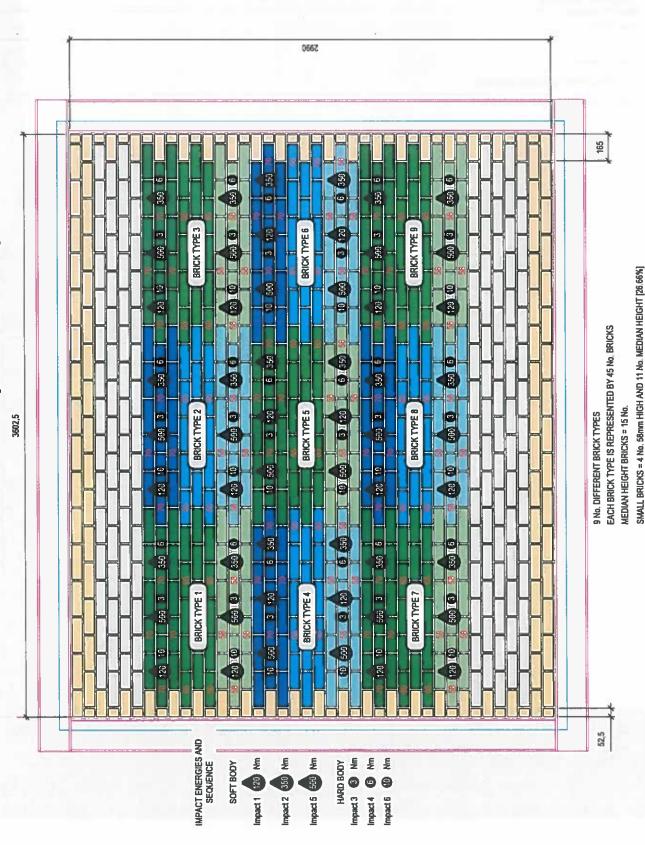
THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

BARRACUDA HORIZONTAL RAIL REQUIREMENT BAR-R1-1800 = 78 No. BAR-R2-1800 = 2 No. BAR-R3-1800 = 2 No.

BARRACUDA VERTICAL RAIL REQUIREMENT

BAR-VT1-2990 = 6 No.
BAR-VT1-2990 = 1 No.
'HELPING HAND' BRACKET REQUIREMENT
Nowlens 90 (ADJI IISTUSHY RANGE 97mm, TO 137)

'HELPING HAND' BRACKET REQUIREMENT Neelope 90 (ADJUSTMENT RANGE 92mm TO 132mm) VERTICAL LOAD BEARING HELPING HAND = 7 No. RESTRAIN HELPING HAND = 28 No.


EME	JAMES & TAYLOR LTD	PROJECT: BRICK SLIP SYSTEM	TEST RIG TYPE A GENERAL ARRANGEMENT	_	CHECKEDBY	PLOT SIZE.	ER: REVISION
REVISIONS:	JAMES & 1	PROJECT: BRICK SLIF	TEST RIG TYPE A GENERAL ARRAN	03/12/2021	DRAWN BY: JSC	scue 1:16	DRAWING NUMBER:

C ame t Tope La 200

6.56 PM

PLOT DATE: January 16, 2022

TEST RIG TYPE A - TEST 4 [MORTARED IMPACT]

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

= BLOCKLEY WINDERMERE GREY SOLID = WIENERBERGER STAFFORDSHIRE SMOOTH CREAM 215mm LONG 'STANDARD' SLIPS = 135 No.

215mm LONG SLIPS WITH BOTTOM REBATE = 15 No. 165mm LONG SLIPS WITH "BOTTOM" REBATE = 1 No. 52mm LONG SLIPS WITH BOTTOM REBATE = 1 No. 215mm LONG SLIPS WITH TOP REBATE = 15 No. 165mm LONG SLIPS WITH TOP REBATE = 1 No. 52mm LONG SLIPS WITH TOP REBATE = 1 No. 215mm LONG 'STANDARD' SLIPS = 30 No. 165mm LONG 'STANDARD' SLIPS = 38 No. 52mm LONG 'STANDARD' SLIPS = 38 No.

DRAWING REMAKED JSC 11/11/2022 AMPACT LOCATIONS ALDED JSC 15/10/2022	DATE	AMES & TAYLOR LTD
Ray B Of	REVISIONS:	JAMES

BRICK SLIP SYSTEM

-TEST 4	USC OFFICED BY:	PLOT SIZE:
TEST RIG TYPE A - TEST 4 MORTARED IMPACT ONTE 04/12/2021	DRAWN BY: JSC	1:16

(C) James & Toylor (18) 2009 PLOT DATE: November 11, 2022 12:20 PM

BSS-TRA-T4 DRAWING NUMBER:

LARGE BRICKS = 4 No. 70mm HIGH AND 11 No. MEDIAN HEIGHT [26.66%]

REVISION

VINCI Technology Centre UK Limited Stanbridge Road Leighton Buzzard Bedfordshire LU7 4QH UK

0333 5669000

info@technology-centre.co.uk www.technology-centre.co.uk

Technical Report

Title:

Heat Rain, Freeze Thaw, Cyclic Wind Loading and Impact Testing of Barracuda Brick Slip System.

Report No: N950-24-18683

Technical Report

Title:

Heat Rain, Freeze Thaw, Cyclic Wind Load and Impact Testing of

Barracuda Brick Slip System

Customer:

James & Taylor Ltd,

Sixty-Two, Barwell Business Park,

Leatherhead Road, Chessington, Surrey KT9 2NY.

Issue date:

6 March 2024

VTC job no.:

TR0220-3WK2

Author(s):

J. Lakin - Engineer

Checked by:

N. McDonald - Manager

Authorised by:

S. R. Moxon – Operations Director

Distribution:

1 copy to James & Taylor

(confidential)

1 copy to project file

This report and the results shown and any recommendations or advice made herein is based upon the information, drawings, samples and tests referred to in the report. Where this report relates to a test for which VINCI Technology Centre UK Limited is UKAS accredited, the opinions and interpretations expressed herein are outside the scope of the UKAS accreditation. We confirm that we have exercised all reasonable skill and care in the preparation of this report within the terms of this commission with the client. This approach takes into account the level of resources, manpower, testing and investigations assigned to it as part of the client agreement. We disclaim any responsibility to the client and other parties in respect of any matters outside the scope of our instruction. This report is confidential and privileged to the client, his professional advisers and VINCI Technology Centre UK Limited and we do not accept any responsibility of any nature to third parties to whom the report, or any part thereof, is made known. No such third party may place reliance upon this report. Unless specifically assigned or transferred within the terms of the agreement, we assert and retain all copyright, and other intellectual Property Rights, in and over the report and its contents.

VINCI Technology Centre UK Limited, Stanbridge Road, Leighton Buzzard, Bedfordshire, LU7 4QH

Registered Office, Watford. Registered No. 05640885 England.

Tel. 0333

0333 5669000

email info@technology-centre.co.ukweb www.technology-centre.co.uk

© Technology Centre

CONTENTS

1_	INTRODUCTION	4
2	SUMMARY AND CLASSIFICATION OF TEST RESULTS	5
3	DESCRIPTION OF TEST SAMPLE	8
4	TEST EQUIPMENT	12
5	INSTRUMENTATION	15
1.	TEST PROCEDURE	14
2.	TEST RESULTS	17
6	APPENDIX - DRAWINGS	81

1 INTRODUCTION

This certificate of test describes testing carried out at the request of James & Taylor Ltd. between November 2022 and July 2023 at VINCI Technology Centre, Leighton Buzzard.

Testing carried out was in accordance or general accordance with the following:

- *EAD 090062-00-0404 (M.1.2 Hygrothermal Cycles, Heat Rain Cycles)
- *CEN/TS: 772-22:2006 (9.2 Freeze/Thaw Cycling)
- CWCT Standard for systemised building envelopes (Part 8, 8.14.6)
- CWCT TN75/76

Tests listed above and marked with an asterisk are not on our UKAS schedule.

Testing was undertaken by J. Lakin at the VINCI Technology Centre, Stanbridge Road, Leighton Buzzard, Bedfordshire, LU7 4QH, at the instruction of James & Taylor Ltd..

The test was witnessed by:

John Champion - James & Taylor Ltd.

This test report relates only to the actual sample as tested and described herein.

The results are valid only for sample(s) tested and the conditions under which the tests were conducted.

VINCI Technology Centre UK Limited is accredited to ISO/IEC 17025:2017 by the United Kingdom Accreditation Service as UKAS Testing Laboratory No. 0057 for a schedule of tests. Tests listed above and marked with an asterisk are not on our schedule.

VINCI Technology Centre UK Limited is Approved Body No. 1766.

VINCI Technology Centre UK Limited is certified by BSI for:

- ISO 9001 Quality Management System,
- ISO 14001 Environmental Management System,
- ISO 45001 Occupational Health and Safety Management System.

2 SUMMARY AND CLASSIFICATION OF TEST RESULTS

2.1 HEAT RAIN CYCLING

Hairline cracking <0.2 mm was observed running horizontally through the mortar beds at several locations, up to a maximum length of 1.5 m.

No blistering or peeling was observed to the brick slip sample during and after the completion of the testing.

No damage or degradation was observed to any of the brick slips or supporting elements during and after the completion of the testing.

2.2 FREEZE THAW CYCLING

Hairline cracking <0.2 mm was observed running horizontally through the mortar beds at several locations, up to a maximum length of 1.5 m.

No blistering or peeling was observed to the brick slip sample during and after the completion of the testing.

No damage or degradation was observed to any of the brick slips or supporting elements during and after the completion of the testing.

2.3 CYCLIC WIND LOADING

No blistering or peeling was observed to the brick slip sample during and after the completion of the testing.

No damage or degradation was observed to any of the brick slips or supporting elements during and after the completion of the testing.

2.4 IMPACT TESTING

2.4.1 Soft body impacts

120 J	350 J	500 J
serviceability	safety	safety
Class 1	Negligible risk	Negligible risk

2.4.2 Hard body impacts

3 J	6 J	10 J
serviceability / safety	serviceability	serviceability / safety
Class 1 / Negligible risk	Class 1	Class 1 / Negligible risk

2.4.3 Impact classes

Note: Tables 1 to 2 are taken from CWCT TN76.

Table 1 - Classes for serviceability performance

Class	Definition	Explanation/Examples
1	No damage.	No damage visible from 1m, and Any damage visible from closer than 1 m unlikely to lead to significant deterioration.
2	Surface damage of an aesthetic nature which is unlikely to require remedial action.	Dents or distortion of panels not visible from more than 5m (note visibility of damage will depend on surface finish and lighting conditions – damage will generally be more visible on reflective surfaces), and Any damage visible from closer than 5 m unlikely to lead to significant deterioration.
3	Damage that may require remedial action or replacement of components to maintain appearance or long term performance but does not require immediate action.	Dents or distortion of panels visible from more than 5 m, or Spalling of edges of panels of brittle materials, or Damage to finishes that may lead to deterioration of the substrate.
4	Damage requiring immediate action to maintain appearance or performance. Remedial action may include replacement of a panel but does not require dismantling or replacement of supporting structure.	Significant cracks in brittle materials e.g. cracks that may lead to parts of tile falling away subsequent to test, or Fracture of panels causing significant amounts of material to fall away during test.
5	Damage requiring more extensive replacement than 4.	Buckling of support rails.

Table 2 - Classes for safety performance

Class	Explanation/examples	
Negligible risk	No material dislodged during test, and	
	No damage likely to lead to materials falling subsequent to test, and	
	No sharp edges produced that would be likely to cause severe injury to a person during impact, and	
	Cladding not penetrated by impactor.	
Low risk	Maximum mass of falling particle 50g, and	
	Maximum mass of particle that may fall subsequent to impact 50g, and	

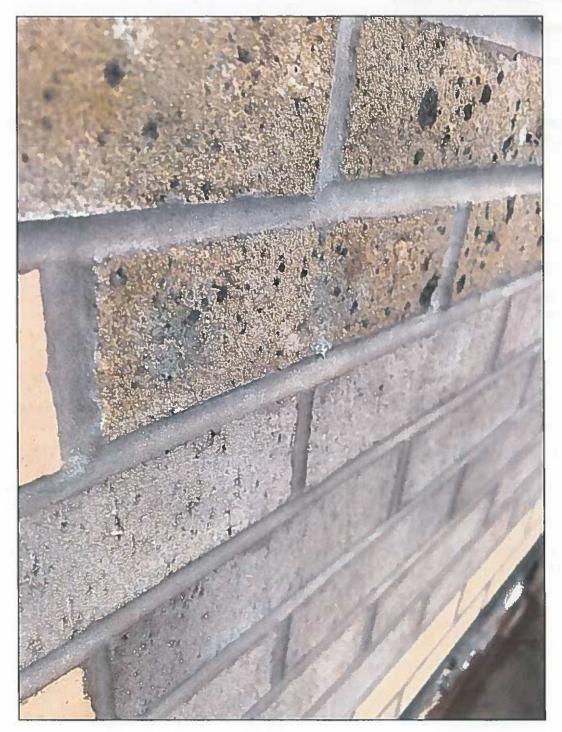
	No sharp edges produced that would be likely to cause severe injury during impact.	
Moderate risk	Maximum mass of falling particle less than 500g, and Maximum mass of particle that may fall subsequent to impact less than 500g, and Cladding not penetrated by impact, and No sharp edges produced that would be likely to cause severe injury during impact.	
High risk	Maximum mass of falling particle greater than 500g, or Cladding penetrated by impact, or Sharp edges produced that would be likely to cause severe injury during impact.	

3 DESCRIPTION OF TEST SAMPLE

The sample was mounted in a solid steel frame which was fixed to a rigid concrete wall as shown in the photograph below.

The sample was installed and mortar injected and left for 28 days prior to any testing commencing.

PHOTO 6119


TEST SAMPLE

SUPPORT BRACKET

SUPPORT BRACKETS / RAIL

CLOSE UP OF BRICK SLIPS

4 TEST EQUIPMENT

4.1 HEAT RAIN CYCLING

Temperature was measured using suitable type k thermocouples.

Relative humidity was measured using a hygrometer.

375 W heat lamps along with a 30 kWh convection based heater.

Spray bar with nozzles 400 mm apart, nozzles had a full cone pattern between 90 $^{\rm o}$ and 120 $^{\rm o}$ spread.

4.2 FREEZE THAW CYCLING

Temperature was measured using suitable type k thermocouples.

Relative humidity was measured using a hygrometer.

Large industrial freezer unit.

Spray bar with nozzles 400 mm apart, nozzles had a full cone pattern between 90 $^{\circ}$ and 120 $^{\circ}$ spread.

4.3 CYCLIC WIND LOADING

Pressure was measured using a suitable ranged pressure transducer and digital display.

Pressure was applied using suitable sized fans, along with diverter valve to allow for transition between positive and negative pressure.

4.4 IMPACT TESTING

The soft body impactor comprised a canvas spherical/conical bag 400 mm in diameter filled with 3 mm diameter glass spheres with a total mass of 50 kg suspended from a cord at least 3 m long.

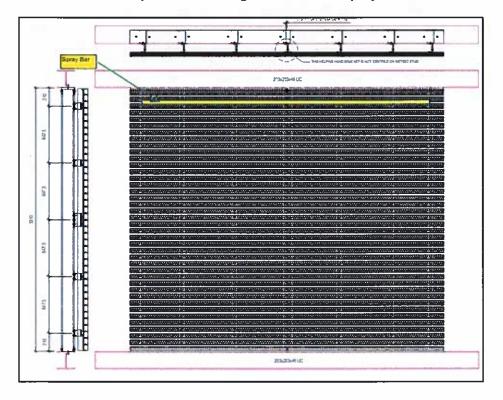
The hard body impactor was solid steel ball of 50.0 mm or 62.5 mm diameter and mass of 0.5 kg or 1.0 kg.

5 INSTRUMENTATION

Below is Table 3 showing details of all the of direct measurement equipment and it's accuracy used during testing.

Table 3 – Details of Measurement Instrumentation Used.

VINCI Technology Centre Ref.	Description	Accuracy
CLR755	Type K Thermocouples and Readout	2 ℃
CLR510	Humidity Sensor	5 %
CLR740	8 m Tape Measure	2 mm
CLR467	± 4000 Pa Differential Pressure Transducer	2 %



6 TEST PROCEDURE

6.1 HEAT RAIN CYCLING

A controlled thermal environment enclosure was installed and sealed around the external face of the sample.

The water spray system was installed at the head of the sample, spraying uniformly and being allowed to run down the sample. See Drawing 1 for details of spray bar location.

Drawing 1 - Spray Bar Location.

The sample was subject to 100 cycles (six hours each cycle), comprising of the following phases:

- 1. Heated to 70 °C, over three hours rising and maintained at 70 \pm 5 °C at 10 % to 30 % RH
- 2. Sprayed at 1.0 l/m² min, water temperature 15 ± 5 °C for one hour.
- 3. Left for 2 hours to drain.

After a period of every four cycles the sample was inspected and any change in characteristics or performance (blistering, detachment, crazing, loss of adhesion, formation of cracks) was recorded.

Total Single Cycle Time = 6 Hours

6.2 FREEZE THAW CYCLING

A controlled thermal environment enclosure was installed and sealed around the external face of the sample.

The water spray system was installed at the head of the sample, spraying uniformly and being allowed to run down the sample. See Drawing 1 for details of spray bar location.

Samples was subject to 100 cycles (150 minutes each cycle), comprising of the following phases:

Temperature measurements were be based upon an air temperature measurement, taken from 30 mm \pm 10 mm away from the centre of the exposed face.

The first freezing period lasted for $6 h \pm 5 min$.

- 1. Temperature fell from 20 ± 3 °C to -15 ± 3 °C in more than 20 but less than 30 minutes. The temperature was then be held at -15 ± 3 °for more than 90 but less than 100 minutes.
- 2. Temperature the rose from -15 \pm 3 °C to 20 \pm 3 °C in more than 15 but no less than 20 minutes. The total warm air period including the period of temperature rise was 20 minutes 1 \pm 1 minutes.
- 3. Sprayed at 6 ± 0.5 l/min per metre width of sample for 120 ± 10 s.

At the end of the 100th cycle the panel was allowed to thaw completely and any visible damage to the exposed face of the were panel recorded.

Total Single Cycle Time = 150 Minuets

6.3 CYCLIC WIND LOADING

The following cyclic load tests were carried out on the sample.

No of cycles	Applied pressure (pascals)
1	$0.9 \times W_P = \pm 2160$
960	$0.4 \times W_P = \pm 960$
60	$0.6 \times W_P = \pm 1440$
240	$0.5 \times W_P = \pm 1200$
5	$0.8 \times W_P = \pm 1920$
14	$0.7 \times W_P = \pm 1680$

Where W_P = design wind load

The sequence above was repeated for a total of six times and then a single pulse of W_p (± 2400 pascals) was applied.

The frequency of oscillation was seven seconds between loading, with loading applied in a sinusoidal manner.

6.4 IMPACT TESTING

6.4.1 Soft body

The impactor almost touched the face of the sample when at rest. It was swung in a pendular movement to hit the sample normal to its face. The test was performed at the locations shown in Figure 1.

The impact energies were 120 J for serviceability and 350 J or 500 J for safety.

6.4.2 Hard body

The impactor almost touched the face of the sample when at rest. It was swung in a pendular movement to hit the sample normal to its face. The test was performed at the locations shown in Figure 1.

The impact energies were 3 J, 6 J and 10 J.

7 TEST RESULTS

7.1 HEAT RAIN CYCLING

Test Date: 23/11/22 and 29/02/23.

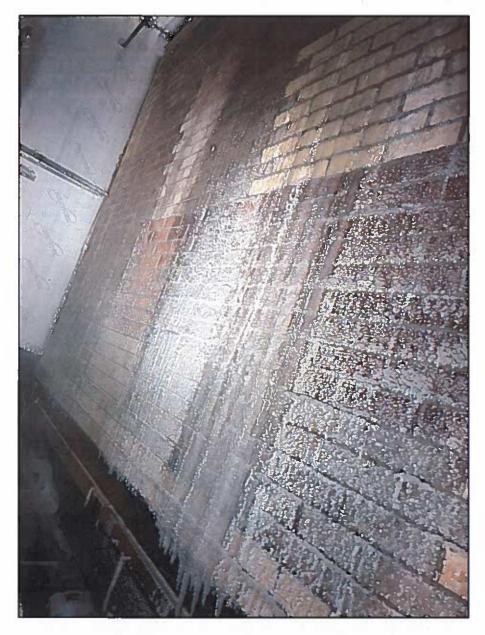
Hairline cracking <0.2 mm was observed running horizontally through the mortar beds at several locations, up to a maximum length of 1.5 m.

No blistering or peeling was observed to the brick slip sample during and after the completion of the testing.

No damage or degradation was observed to any of the brick slips or supporting elements during and after the completion of the testing.

PHOTO 20221123_132854

TEST SETUP AND WATER SPRAYING OCCURING


7.2 FREEZE THAW CYCLING

Test Date: March 2023 to May 2023

Hairline cracking <0.2 mm was observed running horizontally through the mortar beds at several locations, up to a maximum length of 1.5 m.

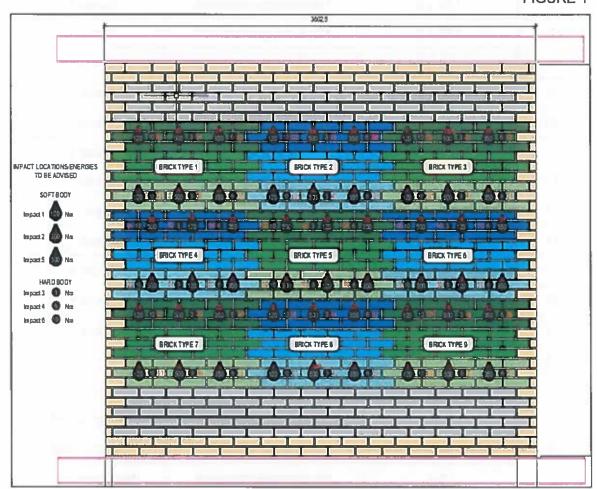
No blistering or peeling was observed to the brick slip sample during and after the completion of the testing.

No damage or degradation was observed to any of the brick slips or supporting elements during and after the completion of the testing.

ICE BUILD UP ON FACE OF BRICKS SLIPS BEFORE THAWING

7.3 CYCLIC WIND LOADING

Test Date: 8th May 2023 to 12th May 2023


No blistering or peeling was observed to the brick slip sample during and after the completion of the testing.

No damage or degradation was observed to any of the brick slips or supporting elements during and after the completion of the testing.

7.4 IMPACT TESTING

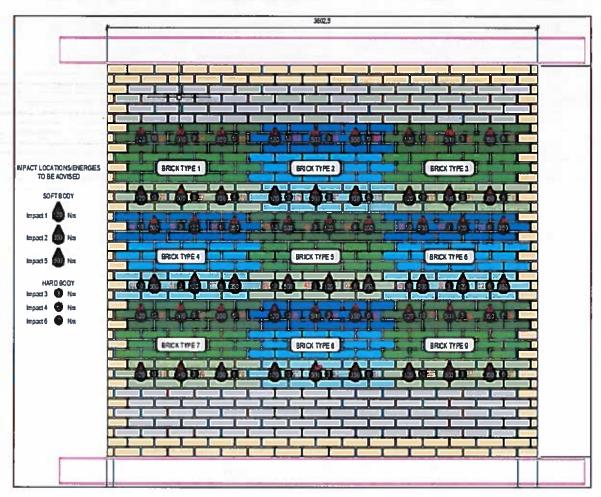
Test Date: 25th July 2023 Ambient temperature = 18 °C

FIGURE 1

SOFT BODY IMPACT LOCATIONS

TABLE 3

SOFT BODY IMPACT TEST RESULTS


Location	Impact energy (J)	Observations	Classification
1	120 x 3	No damage observed	Class 1
2	120 x 3	No damage observed	Class 1
3	120 x 3	No damage observed	Class 1
. 4	120 x 3	No damage observed	Class 1
5	120 x 3	No damage observed	Class 1
6	120 x 3	No damage observed	Class 1
7	120 x 3	No damage observed	Class 1
8	120 x 3	No damage observed	Class 1
9	120 x 3	No damage observed	Class 1
10	120 x 3	No damage observed	Class 1
11	120 x 3	No damage observed	Class 1
12	120 x 3	No damage observed	Class 1
13	120 x 3	No damage observed	Class 1
14	120 x 3	No damage observed	Class 1
15	120 x 3	No damage observed	Class 1
16	120 x 3	No damage observed	Class 1
17	120 x 3	No damage observed	Class 1
18	120 x 3	No damage observed	Class 1
19	350	No damage observed	Negligible risk
20	350	No damage observed	Negligible risk
21	350	No damage observed	Negligible risk
22	350	No damage observed	Negligible risk
23	350	No damage observed	Negligible risk
24	350	No damage observed	Negligible risk
25	350	No damage observed	Negligible risk
26	350	No damage observed	Negligible risk
27	350	No damage observed	Negligible risk

28	350	No damage observed	Negligible risk
29	350	No damage observed	Negligible risk
30	350	No damage observed	Negligible risk
31	350	No damage observed	Negligible risk
32	350	No damage observed	Negligible risk
33	350	No damage observed	Negligible risk
34	350	No damage observed	Negligible risk
35	350	No damage observed	Negligible risk
36	350	No damage observed	Negligible risk
73	500	No damage observed	Negligible risk
74	500	No damage observed	Negligible risk
75	500	No damage observed	Negligible risk
76	500	No damage observed	Negligible risk
77	500	No damage observed	Negligible risk
78A	500	No damage observed	Negligible risk
78B	500	No damage observed	Negligible risk
79	500	No damage observed	Negligible risk
80	500	No damage observed	Negligible risk
81	500	No damage observed	Negligible risk
82	500	No damage observed	Negligible risk
83	500	No damage observed	Negligible risk
84	500	No damage observed	Negligible risk
85	500	No damage observed	Negligible risk
86	500	No damage observed	Negligible risk
87	500	No damage observed	Negligible risk
88	500	No damage observed	Negligible risk
89	500	No damage observed	Negligible risk
90	500	No damage observed	Negligible risk

FIGURE 2

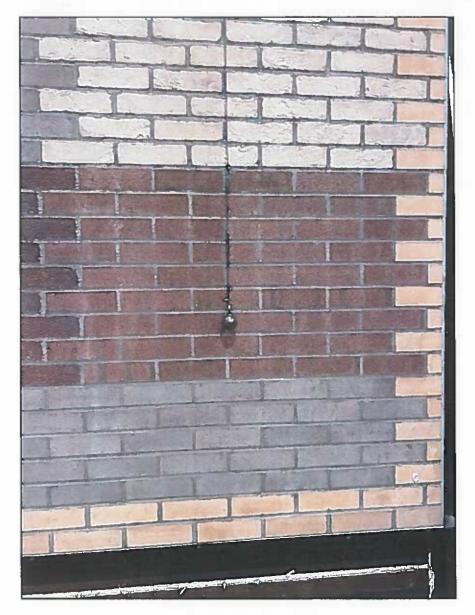
HARD BODY IMPACT LOCATIONS

TABLE 4 23HARD BODY IMPACT TEST RESULTS

			=78, 9, 9,
_ocation	Impact energy (J)	Observations	Classification
37	3	Small mark	Class 1 Negligible risk
38	3	Small mark	Class 1 Negligible risk
39	3	Small mark	Class 1 Negligible risk
40	3	Small mark	Class 1 Negligible risk
41	3	Small mark	Class 1

			Negligible risk
12	3	Small mark	Class 1 Negligible risk
43	3	Small mark	Class 1 Negligible risk
44	3	Small mark	Class 1 Negligible risk
45	3	Small mark	Class 1 Negligible risk
46	3	Small mark	Class 1 Negligible risk
47	3	Small mark	Class 1 Negligible risk
48	3	Small mark	Class 1 Negligible risk
49	3	Small mark	Class 1 Negligible risk
50	3	Small mark	Class 1 Negligible risk
51	3	Small mark	Class 1 Negligible risk
52	3	Small mark	Class 1 Negligible risk
53	3	Small mark	Class 1 Negligible risk
54	3	Small mark	Class 1 Negligible risk
55	6	Small mark	Class 1
56	6	Small mark	Class 1
57	6	Small mark	Class 1
58	6	Small mark	Class 1
59	6	Small mark	Class 1
60	6	Small mark	Class 1
61	6	Small mark	Class 1

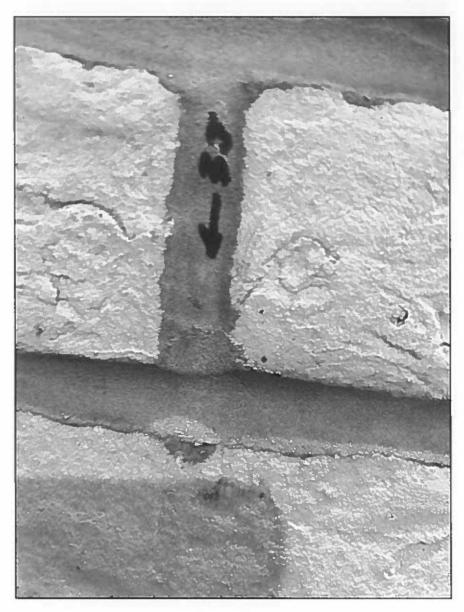
62	6	Small mark	Class 1
63	6	Small mark	Class 1
64	6	Small mark	Class 1
65	6	Small mark	Class 1
66	6	Small mark	Class 1
67	6	Small mark	Class 1
68	6	Small mark	Class 1
69	6	Small mark	Class 1
70	6	Small mark	Class 1
71	6	Small mark	Class 1
72	6	Small mark	Class 1
91	10	Small mark	Class 1 Negligible risk
92	10	Small mark	Class 1 Negligible risk
93	10	Small mark	Class 1 Negligible risk
94	10	Small mark	Class 1 Negligible risk
95	10	Small mark	Class 1 Negligible risk
96	10	Small mark	Class 1 Negligible risk
97	10	Small mark	Class 1 Negligible risk
98	10	Small mark	Class 1 Negligible risk
99	10	Small mark	Class 1 Negligible risk
100	10	Small mark	Class 1 Negligible risk
101	10	Small mark	Class 1 Negligible risk



102	10	Small mark	Class 1 Negligible risk
103	10	Small mark	Class 1 Negligible risk
104	10	Small mark	Class 1 Negligible risk
105	10	Small mark	Class 1 Negligible risk
106	10	Small mark	Class 1 Negligible risk
107	10	Small mark	Class 1 Negligible risk
108	10	Small mark	Class 1 Negligible risk

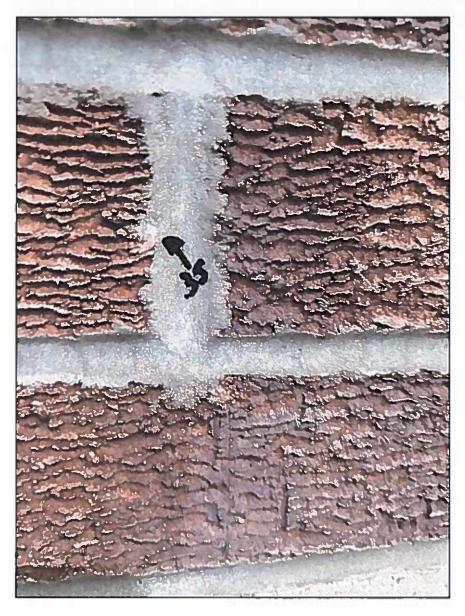
SOFT BODY IMPACTOR

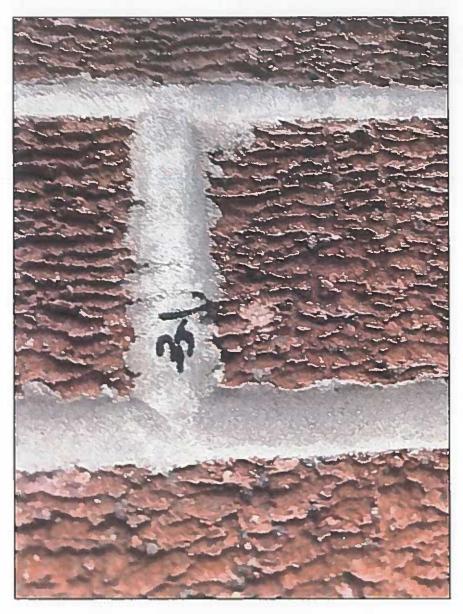
HARD BODY IMPACTOR

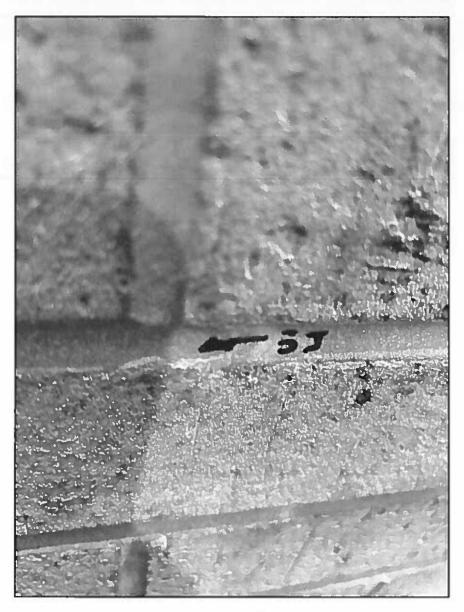

IMPACT LOCATION 37

IMPACT LOCATION 38

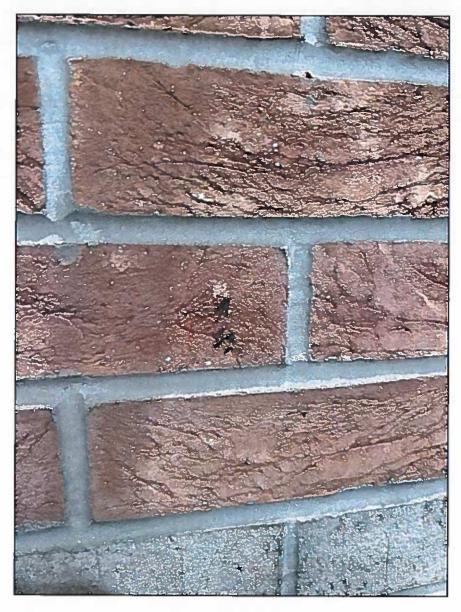
IMPACT LOCATION 39


IMPACT LOCATION 40

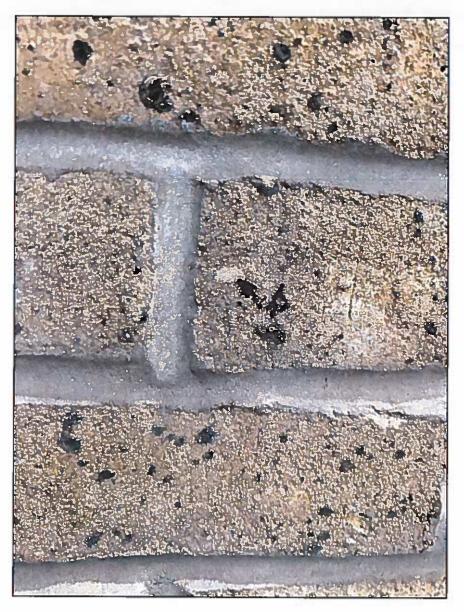

IMPACT LOCATION 41


IMPACT LOCATION 42

IMPACT LOCATION 43


IMPACT LOCATION 44

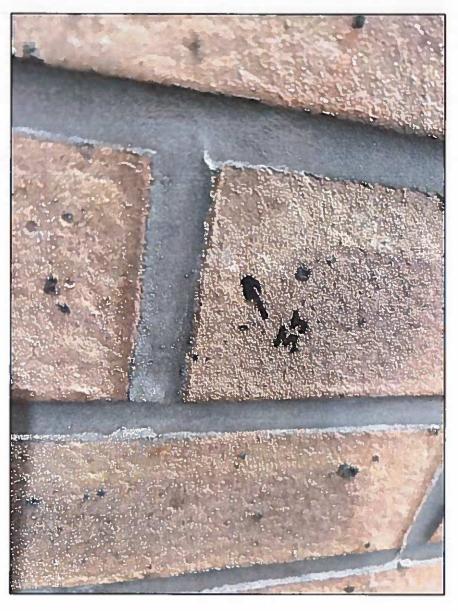
IMPACT LOCATION 45


IMPACT LOCATION 46


IMPACT LOCATION 47

IMPACT LOCATION 48

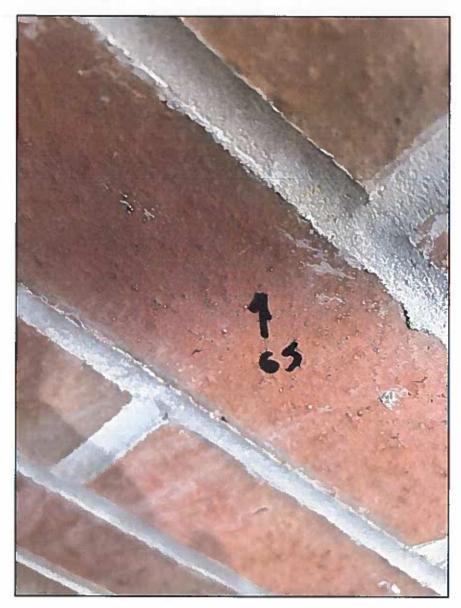
IMPACT LOCATION 49

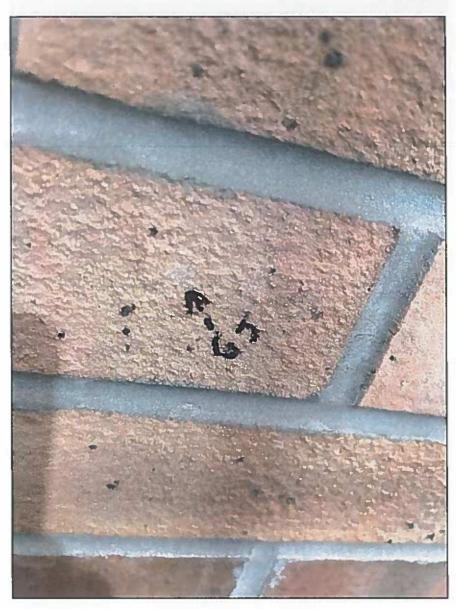

IMPACT LOCATION 50

IMPACT LOCATION 51

IMPACT LOCATION 52

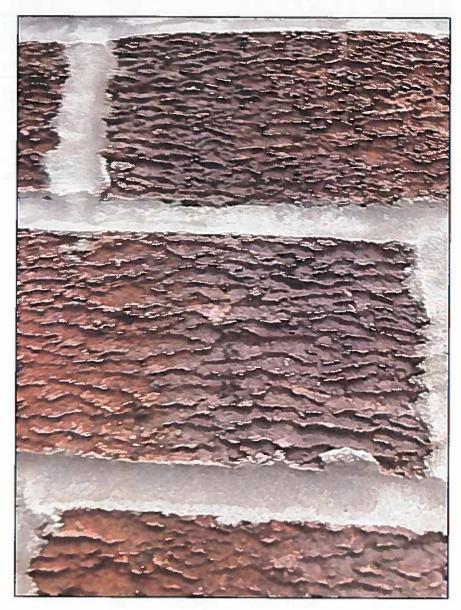
IMPACT LOCATION 53


IMPACT LOCATION 54


IMPACT LOCATION 55

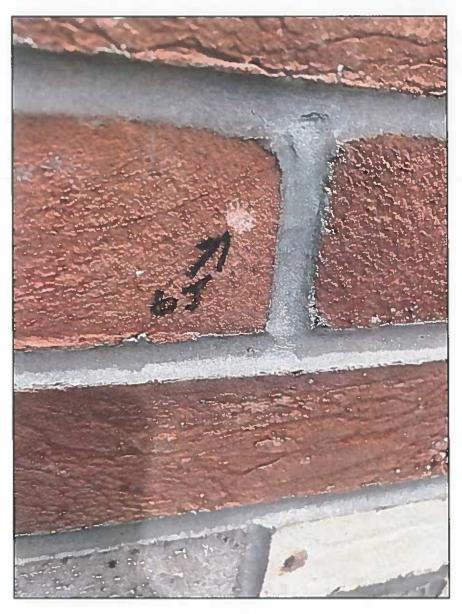
IMPACT LOCATION 56

IMPACT LOCATION 57


IMPACT LOCATION 58

IMPACT LOCATION 59

IMPACT LOCATION 60


IMPACT LOCATION 61

IMPACT LOCATION 62

IMPACT LOCATION 63

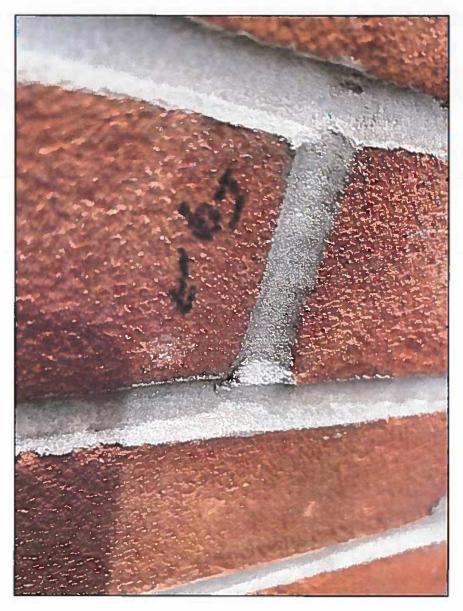
IMPACT LOCATION 64

IMPACT LOCATION 65

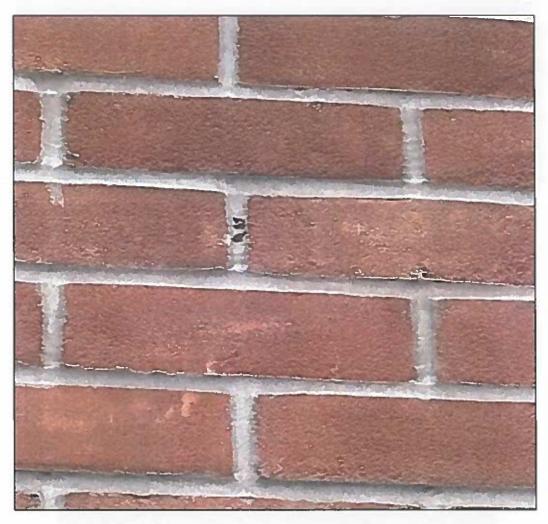
IMPACT LOCATION 66

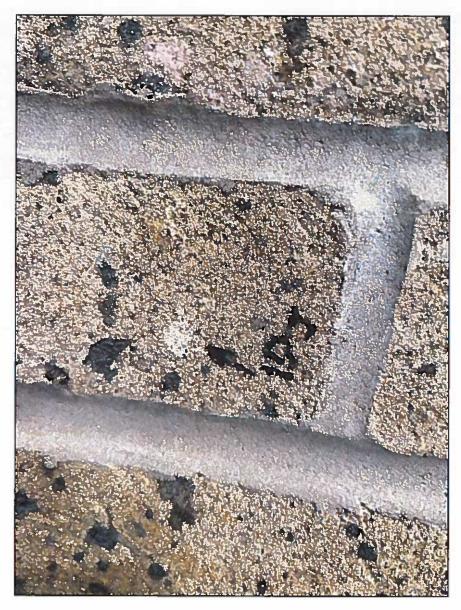
IMPACT LOCATION 67

IMPACT LOCATION 68



IMPACT LOCATION 69




IMPACT LOCATION 70

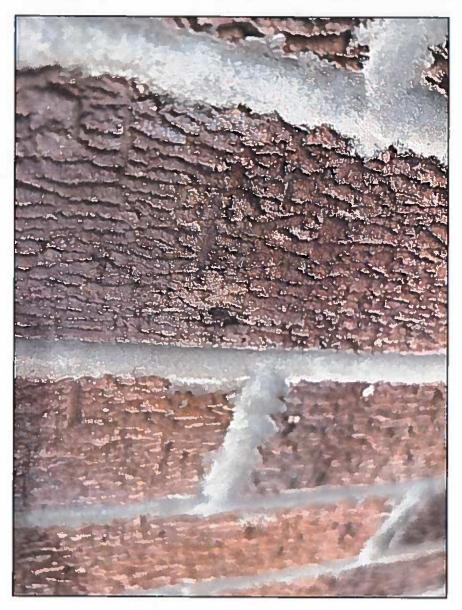
IMPACT LOCATION 71

IMPACT LOCATION 72

IMPACT LOCATION 91

IMPACT LOCATION 92

IMPACT LOCATION 93


IMPACT LOCATION 94

IMPACT LOCATION 95

IMPACT LOCATION 96

IMPACT LOCATION 97

IMPACT LOCATION 98

IMPACT LOCATION 99

IMPACT LOCATION 100

IMPACT LOCATION 101

IMPACT LOCATION 102

IMPACT LOCATION 103

IMPACT LOCATION 104

IMPACT LOCATION 105

PHOTO IMG_6221

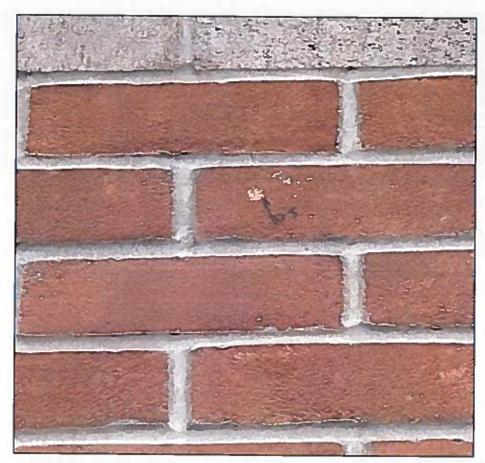
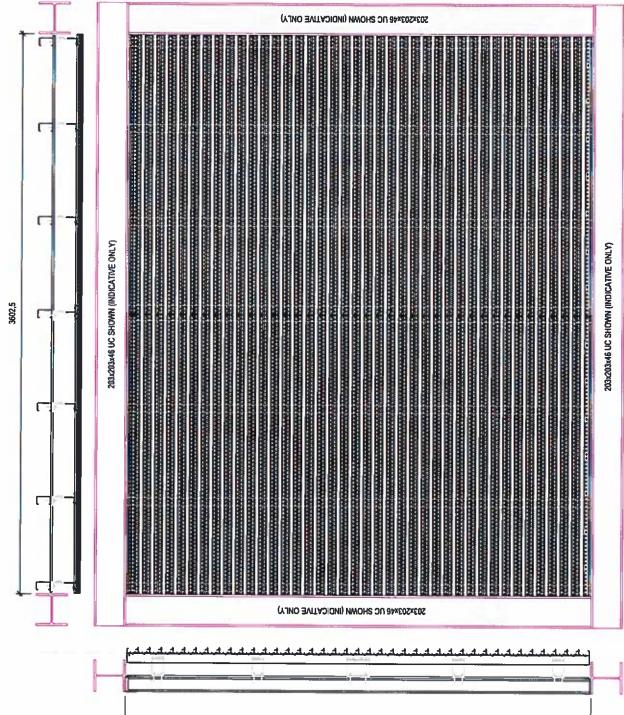

IMPACT LOCATION 106

PHOTO IMG_6222

IMPACT LOCATION 107

PHOTO IMG_7239

IMPACT LOCATION 108


8 APPENDIX - DRAWINGS

The following 4 unnumbered pages are copies of James & Taylor Limited drawings numbered:

- BSS-TRA-003
- BSS-TRA-DT-001
- BSS-TRA-GA-002
- BSS-TRA-T4 Rev B

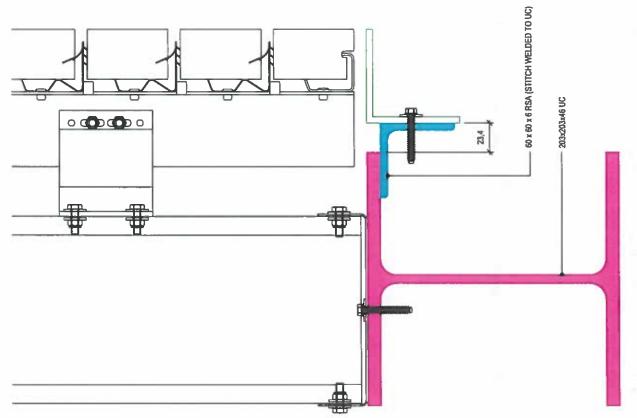
END OF REPORT

TEST RIG TYPE A VERTICAL SUB-STRUCTURE AND BARRACUDA RAIL SETTING OUT

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS,


BARRACUDA HORIZONTAL RAIL REQUIREMENT BAR-R1-1800 = 78 No.

BAR-R2-1800 = 2 No. BAR-R3-1800 = 2 No. BARRACUDA VERTICAL RAK REGUIREMENT BAR-VL1-2990 = 6 No. BAR-VT1-2990 = 1 No. HELPING HAND' BRACKET REQUIREMENT VERTICAL LOAD BEARING HELPING HAND = 7 No. RESTRAINT HELPING HAND = 28 No. PROJECTS

PROJEC

PLOT DATE: September 23, 2020 11:37 AM © Jame & Layer Let 200

TYPICAL PERIMETER DETAIL **TEST RIG TYPE A**

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

REVISIONS A TAYLOR LTD PROJECT: BRICK SLIP SYSTEM THE TEST RIG TYPE A TYPICAL PERIMETER DETAIL OATE: 03/12/2021 DRAWN BY: JSC SCALE: RIOT SIZE STATES A3		
AMES & TAYLOR LTD PROJECT: BRICK SLIP SYSTEM THE TEST RIG TYPE A TYPICAL PERIMETER DETAIL OATE 03/12/2021 DRAWHER: JSC JSC SCALE: ROT SIZE A3	REVISIONS:	DATE
K SLIP SYSTEM FRIG TYPE A CAL PERIMETER DETAIL 9/2021 July July July July July July July Jul	JAMES & TAYLOR LTD	1
TRIG TYPE A CAL PERIMETER DETAIL 1/2021 IN ORDINE JUSTICAL JUSTICAL FINE RECEIVED	PROJECT: BRICK SLIP SYSTEM	
BY: OFFICIENT OF	me TEST RIG TYPE A TYPICAL PERIMETER DET ONE. 03/12/2021	AIL
PLOTS	DRAWN BY: JSC	OSC JSC
	scale:	PLOT SUZE A3

C Amen & Toyon Liv. 2000

PLOT DATE: December 3, 2021 4:39 PM

BSS-TRA-DT-001

DRAWING NUMBER:

REVISION.

TEST RIG TYPE A METSEC BACKING WALL; STUDWORK, BASE, AND HEAD TRACK SETTING OUT/CONFIGURATION 161,25 203×203×46 UC A2F 8x08x08)เป็นสายไปเกราะเก็นสายในการแบบเก็บสายในการแบบการเป็นสายในการเก็บการในสายในการแบบการในสายในการเป็นสายในก 301,25 . \$ 8 8 203x203x46 UC 203x203x46 UC 3000 ŝ . 8 8 301,25 A2A 8x08x08 161,25 203×203×46 UC а <u>Ц</u>

1862

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

VERTICAL STUBS 150M12-75 (THEORETICAL LENGTH 2987nm) = 7 No. METSEC REQUIREMENT

154M12-40 (THEORETICAL LENGTH 3602mm) = 1 No. BASE TRACK

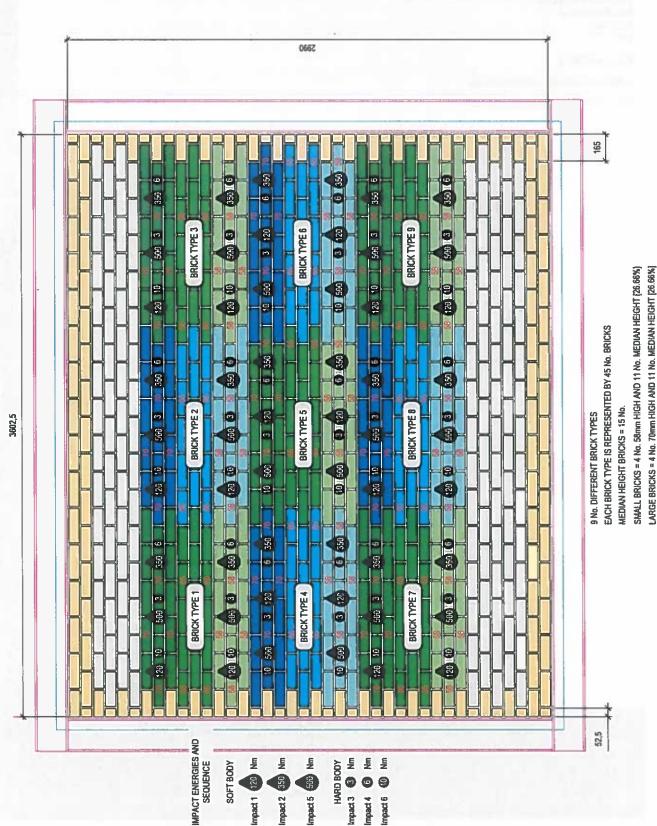
HEAD TRACK

154M16-70s (THEORETICAL LENGTH 3602mm) = 1 No.

JAMES & TAYLOR LTD

PROJECT: BRICK SLIP SYSTEM

TEST RIG TYPE A GENERAL ARRANGEMENT DATE:


PLOT SIZE SC A3 03/12/2021 DRAWN BY: SC SCALE

BSS-TRA-GA-002 PLOT DATE: January 16, 2022

REVISION

C James & Taylor 134 2008 6:18 PM

TEST RIG TYPE A - TEST 4 [MORTARED IMPACT]

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECTS AND ENGINEER'S DRAWINGS.

215mm LONG 'STANDARD' SLIPS = 135 No.

WIENERBERGER STAFFORDSHIRE SMOOTH CREAM

= BLOCKLEY WINDERMERE GREY SOLID

215mm LONG 'STANDARD' SLIPS = 30 No.
165mm LONG 'STANDARD' SLIPS = 38 No.
215mm LONG 'STANDARD' SLIPS = 38 No.
215mm LONG SLIPS WITH TOP REBATE = 15 No.
215mm LONG SLIPS WITH TOP REBATE = 15 No.
165mm LONG SLIPS WITH TOP REBATE = 1 No.
165mm LONG SLIPS WITH TOP REBATE = 1 No.
52mm LONG SLIPS WITH TOP REBATE = 1 No.
52mm LONG SLIPS WITH TOP REBATE = 1 No.
52mm LONG SLIPS WITH TOP REBATE = 1 No.

JSC 11/11/2022	DATE	0
DRAWING REMAKED SAPACT LOCATIONS ADDED		JAMES & TAYLOR LTD
Rev B Rev A	REVISIONS	JAMES

RALECT: BRICK SLIP SYSTEM TEST RIG TYPE A - TEST 4
MORTARED IMPACT
DATE

04/12/2021
DAMMINEY: CHECKED

 DRAWN BY:
 CHECKED BY:

 JSC
 JSC

 SCALE:
 R.OT SIZE:

 1:16
 A3

 DGAWWIG MUMBER:
 REVISION:

PLOT DATE: November 11, 2022 12:20 PM © James & Topic Liv - 2038

BSS-TRA-T4

VINCI Technology Centre UK Limited Stanbridge Road Leighton Buzzard Bedfordshire LU7 4QH UK

0333 5669000

info@technology-centre.co.uk www.technology-centre.co.uk

Technical Report

Title:

Pull Out Testing of Barracuda Brick Slip System (Un-Mortared).

Report No: N950-24-18685

Technical Report

Title:

Pull Out Testing of Barracuda Brick Slip System (Un-Mortared).

Customer:

James & Taylor Ltd;

Sixty-Two, Barwell Business Park,

Leatherhead Road, Chessington, Surrey KT9 2NY.

Issue date:

6 March 2024

VTC job no.:

TR0220-3WK2

Author(s):

S. Bahera – Assistant Engineer

Dahera_

Checked by:

N. McDonald - Manager

NM9 Inlet

Authorised by:

S. R. Moxon – Operations Director

Distribution:

1 copy to James & Taylor

(confidential)

1 copy to project file

This report and the results shown and any recommendations or advice made herein is based upon the information, drawings, samples and tests referred to in the report. Where this report relates to a test for which VINCI Technology Centre UK Limited is UKAS accredited, the opinions and interpretations expressed herein are outside the scope of the UKAS accreditation. We confirm that we have exercised all reasonable skill and care in the preparation of this report within the terms of this commission with the client. This approach takes into account the level of resources, manpower, testing and investigations assigned to it as part of the client agreement. We disclaim any responsibility to the client and other parties in respect of any matters outside the scope of our instruction. This report is confidential and privileged to the client, his professional advisers and VINCI Technology Centre UK Limited and we do not accept any responsibility of any nature to third parties to whom the report, or any part thereof, is made known. No such third party may place reliance upon this report. Unless specifically assigned or transferred within the terms of the agreement, we assert and retain all copyright, and other Intellectual Property Rights, in and over the report and its contents.

VINCI Technology Centre UK Limited, Stanbridge Road, Leighton Buzzard, Bedfordshire, LU7 4QH

Registered Office, Watford. Registered No. 05640885 England.

0333 5669000

email info@technology-centre.co.uk web www.technology-centre.co.uk

© Technology Centre

CONTENTS

1	INTRODUCTION	4
2	SUMMARY AND CLASSIFICATION OF TEST RESULTS	5
3	DESCRIPTION OF TEST SAMPLE	6
	TEST EQUIPTMENT	
5	INSTRUMENTATION	11
	TEST PROCEDURE	
7	TEST RESULTS	13
8	APPENDIX - DRAWINGS	50

1 INTRODUCTION

This report describes tests carried out at VINCI Technology Centre UK Limited at the request of James & Taylor Limited.

The test sample consisted of a Barracuda brick slip system supplied by James & Taylor.

The tests were carried out between March 2023 and August 2023

Testing carried out was in accordance VINCI Technology Centre test method statement: ST8488_MS_REV01 – Test No. 1

Testing was undertaken by S. Bahera at the VINCI Technology Centre, Stanbridge Road, Leighton Buzzard, Bedfordshire, LU7 4QH, at the instruction of James & Taylor Ltd..

The test was witnessed in full or partly by:

John Champion - James & Taylor Ltd.

This test report relates only to the actual sample as tested and described herein.

The results are valid only for sample(s) tested and the conditions under which the tests were conducted.

The long-term durability of the façade system is not assessed by these test methods.

VINCI Technology Centre UK Limited is accredited to ISO/IEC 17025:2017 by the United Kingdom Accreditation Service as UKAS Testing Laboratory No. 0057 for a schedule of tests. Tests listed above and marked with an asterisk are not on our schedule.

VINCI Technology Centre UK Limited is Approved Body No. 1766.

VINCI Technology Centre UK Limited is certified by BSI for.

- ISO 9001 Quality Management System.
- ISO 14001 Environmental Management System,
- ISO 45001 Occupational Health and Safety Management System.

2 SUMMARY AND CLASSIFICATION OF TEST RESULTS

All bricks slips tested held four consecutive applied loads.

All brick slips tested held a load of at least 85 N for 30 seconds three times without becoming dislodged from their retaining rails.

All brick slips tested held a load of at least 100 N for 30 seconds one time without becoming dislodged from their retaining rails.

3 DESCRIPTION OF TEST SAMPLE

The sample was mounted to a solid steel frame which was fixed to a concrete slab as shown in the photograph below.

PHOTO IMG-5655

TEST SAMPLE

PHOTO IMG-5358

SUPPORT BRACKET

PHOTO IMG_5352

CLOSE UP OF BRICK SLIPS

4 TEST EQUIPTMENT

4.1 PULL OUT TESTING

Load was applied using a pneumatic actuator. A pressure regulator was used to control the load.

Load was measured using a 200 kg s-beam load cell.

Displacement was measured using potentiometric displacement transducers.

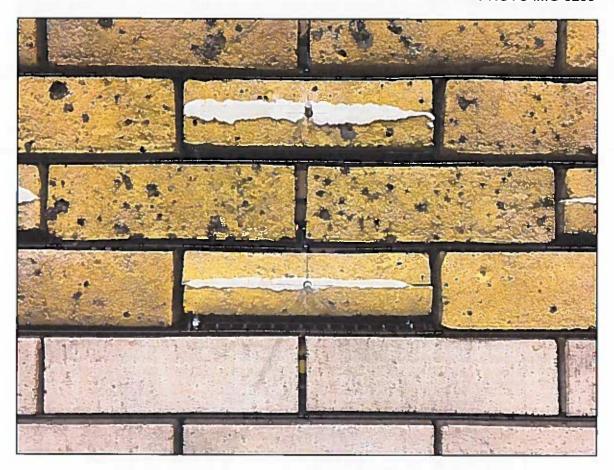

See photo IMG-6586 below for depiction of test setup.

PHOTO IMG-6586

EXAMPLE OF PULL-OUT TEST SETUP

PHOTO IMG-5255

CLOST UP OF STUDS USED TO APPLY LOAD TO BRICK SLIP

5 INSTRUMENTATION

Below is Table 1 showing details of all the of direct measurement equipment and it's accuracy used during testing.

Table 1 – Details of Measurement Instrumentation Used.

VINCI Technology Centre Ref.	Description	Accuracy
STR061	Displacement Transducer	0.1 mm
STR062	Displacement Transducer	0.1 mm
CLR739	Load Cell	1 %

6 TEST PROCEDURE

6.1 PULL OUT TESTING

A total of 108 No. brick slips were tested, locations of each brick slip were designated by James and Taylor prior to testing.

Four consecutive loads were applied to each designated brick slip location.

Three loads of 85 N were applied using a pneumatic actuator attached through a hole drilled in the centre of the slip. Holes were drilled by James and Taylor.

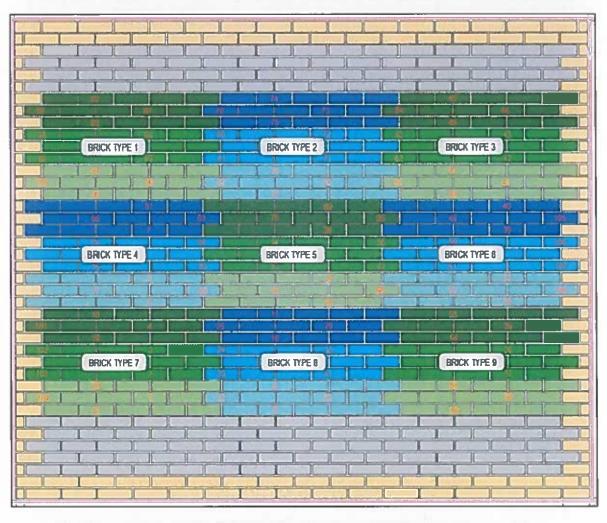
The load was transferred through the back face of the slip using a threaded rod and suitable size nut a washer arrangement.

Three loads were applied with a stabilisation period of 30 seconds allowed under load and a recovery period of 30 seconds allowed after release before deflection measurements were recorded.

A final load of 100N was then be applied with the pneumatic actuator and held for 30 seconds and recovery period of 1 minute was allowed after release before final deflection measurements were taken.

Displacement transducers were used to measure the deflection of the brick slip. The gauges were installed at the mid height of the slip, one at each end.

The following sequence was applied at each designated brick slip location.


- 1. Displacement transducers and load cell were zeroed.
- 2. A load of 85 N was applied. This was held for a minimum of 30 seconds.
- 3. Load was then be removed and left for a minimum of 30 seconds.
- 4. A load of 85 N was applied. This was held for a minimum of 30 seconds.
- 5. Load was then be removed and left for a minimum of 30 seconds.
- 6. A load of 85 N was applied. This was held for a minimum of 30 seconds.
- 7. Load was then be removed and left for a minimum of 30 seconds.
- 8. A load of 100 N was applied. This was held for a minimum of 30 seconds.
- 9. Load was then be removed and left for a minimum of 1 minute.

Displacement under load and residual displacement were recorded along with load throughout the test.

7 TEST RESULTS

DRAWING 1

TEST SAMPLE LOCATIONS (MARKED IN RED TEXT)

7.1 PULL OUT TESTING

Test Date: March 2023 to August 2023.

Table 2 - Brick Slip Pull Out Results - Test Sample 1.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.23	0.23	89.70
85	0.23	0.24	86.09
85	0.24	0.26	85.60
100	0.26	0.27	105.08
Residual Readings	0.000	0.002	-0.13

Table 3 - Brick Slip Pull Out Results - Test Sample 2.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.25	0.28	87.93
85	0.25	0.29	88.27
85	0.25	0.28	86.83
100	0.30	0.33	101.30
Residual Readings	0.18	0.10	0.44

Table 4 - Brick Slip Pull Out Results - Test Sample 3.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.19	0.24	87.08
85	0.29	0.40	87.09
85	0.31	0.42	90.80
100	0.27	0.30	107.45
Residual Readings	0.00	0.00	0.01

Table 5 - Brick Slip Pull Out Results - Test Sample 4.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.30	0.40	87.09
85	0.26	0.37	86.13
85	0.26	0.38	87.87
100	0.36	0.47	106.18
Residual Readings	0.01	0.01	0.08

Table 6 - Brick Slip Pull Out Results - Test Sample 5.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.21	0.26	85.23
85	0.21	0.27	87.82
85	0.21	0.27	88.57
100	0.27	0.36	103.78
Residual Readings	0.07	0.06	-0.12

Table 7 - Brick Slip Pull Out Results - Test Sample 6.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.19	0.24	88.61
85	0.22	0.26	88.17
85	0.23	0.27	89.13
100	0.26	0.31	107.31
Residual Readings	0.02	0.02	0.04

Table 8 – Brick Slip Pull Out Results – Test Sample 7.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.25	0.27	89.58
85	0.27	0.29	89.05
85	0.27	0.29	88.61
100	0.43	0.43	107.12
Residual Readings	0.06	0.05	0.22

Table 9 - Brick Slip Pull Out Results - Test Sample 8.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.77	0.77	85.01
85	0.79	0.78	88.13
85	0.83	0.82	89.91
100	0.77	0.81	101.30
Residual Readings	0.08	0.07	-0.15

Table 10 - Brick Slip Pull Out Results - Test Sample 9.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.31	0.29	87.22
85	0.32	0.30	88.63
85	0.32	0.30	87.90
100	0.37	0.36	100.89
Residual Readings	0.02	0.04	0.28

Table 11 - Brick Slip Pull Out Results - Test Sample 10.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.30	0.29	85.90
85	0.30	0.29	85.01
85	0.31	0.30	88.76
100	0.36	0.36	102.27
Residual Readings	0.01	0.02	-0.17

Table 12 - Brick Slip Pull Out Results - Test Sample 11.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.26	0.31	88.15
85	0.27	0.31	87.27
85	0.27	0.33	88.37
100	0.34	0.37	105.02
Residual Readings	0.06	0.08	0.01

Table 13 – Brick Slip Pull Out Results – Test Sample 12.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.20	0.25	85.52
85	0.27	0.31	85.02
85	0.28	0.33	85.22
100	0.33	0.39	105.19
Residual Readings	0.06	0.03	0.39

Table 14 - Brick Slip Pull Out Results - Test Sample 13.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.20	0.21	88.34
85	0.22	0.25	88.31
85	0.22	0.25	86.07
100	0.27	0.27	101.10
Residual Readings	0.12	0.05	-0.15

Table 15 - Brick Slip Pull Out Results - Test Sample 14.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.18	0.26	89.09
85	0.18	0.26	89.30
85	0.18	0.26	85.56
100	0.27	0.34	105.32
Residual Readings	0.13	0.10	0.33

Table 16 - Brick Slip Pull Out Results - Test Sample 15.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.18	0.27	85.77
85	0.24	0.37	85.63
85	0.26	0.40	85.85
100	0.39	0.44	106.80
Residual Readings	0.00	0.00	0.02

Table 17 - Brick Slip Pull Out Results - Test Sample 16.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.23	0.39	88.02
85	0.23	0.38	85.65
85	0.23	0.38	85.16
100	0.32	0.50	106.65
Residual Readings	0.02	0.03	-0.12

Table 18 – Brick Slip Pull Out Results – Test Sample 17.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.07	0.22	88.32
85	0.11	0.24	87.57
85	0.11	0.24	86.94
100	0.16	0,31	105.47
Residual Readings	0.00	0.01	0.13

Table 19 - Brick Slip Puli Out Results - Test Sample 18.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.16	0.20	88.68
85	0.17	0.21	89.87
85	0.18	0.21	87.01
100	0.21	0.25	101.08
Residual Readings	0.04	0.02	0.20

Table 20 - Brick Slip Pull Out Results - Test Sample 19.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.25	0.36	86.46
85	0.26	0.37	86.13
85	0.26	0.38	87.87
100	0.36	0.47	106.18
Residual Readings	0.01	0.01	0.07

Table 21 - Brick Slip Pull Out Results - Test Sample 20.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.34	0.43	85.35
85	0.44	0.51	89.33
85	0.43	0.50	88.40
100	0.47	0.54	104.51
Residual Readings	0.14	0.12	-0.11

Table 22 - Brick Slip Pull Out Results - Test Sample 21.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.56	0.45	86.20
85	0.58	0.46	85.88
85	0.52	0.47	87.37
100	0.85	0.70	103.62
Residual Readings	0.08	0.06	0.04

Table 23 - Brick Slip Pull Out Results - Test Sample 22.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.21	0.65	89.42
85	0.21	0.63	87.81
85	0.21	0.64	88.96
100	0.54	0.73	106.01
Residual Readings	0.06	0.35	0.24

Table 24 – Brick Slip Pull Out Results – Test Sample 23.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.49	0.30	88.41
85	0.51	0.30	88.27
85	0.51	0.32	88.74
100	0.56	0.46	100.96
Residual Readings	0.03	0.05	0.49

Table 25 - Brick Slip Pull Out Results - Test Sample 24.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.28	0.23	88.23
85	0.32	0.27	86.66
85	0.35	0.31	89.70
100	0.38	0.34	100.50
Residual Readings	0.04	0.09	-0.17

Table 26 - Brick Slip Pull Out Results - Test Sample 25.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.30	0.30	87.40
85	0.32	0.31	88.57
85	0.33	0.31	86.73
100	0.47	0.58	105.05
Residual Readings	0.11	0.37	0.27

Table 27 - Brick Slip Pull Out Results - Test Sample 26.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.32	0.22	85.64
85	0.32	0.21	85.11
85	0.31	0.20	82.55
100	0.41	0.30	105.28
Residual Readings	0.03	0.03	-0.70

Table 28 - Brick Slip Pull Out Results - Test Sample 27.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.11	0.27	87.49
85	0.15	0.32	88.51
85	0.15	0.31	86.91
100	0.27	0.44	101.13
Residual Readings	0.00	0.01	0.08

Table 29 - Brick Slip Pull Out Results - Test Sample 28.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.34	0.43	86.01
85	0.34	0.44	87.45
85	0.34	0.43	86.18
100	0.31	0.56	100.91
Residual Readings	0.04	0.04	0.03

Table 30 - Brick Slip Pull Out Results - Test Sample 29.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.25	0.28	87.86
85	0.25	0.30	89.35
85	0.25	0.30	89.19
100	0.23	0.32	104.28
Residual Readings	0.11	0.09	-0.15

Table 31 - Brick Slip Pull Out Results - Test Sample 30.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.59	0.56	86.35
85	0.61	0.58	86.00
85	0.64	0.61	89.99
100	0.77	0.72	102.16
Residual Readings	0.49	0.43	-0.10

Table 32 - Brick Slip Pull Out Results - Test Sample 31.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.47	0.62	87.00
85	0.47	0.62	85.96
85	0.47	0.63	87.83
100	0.63	0.81	107.00
Residual Readings	0.04	0.08	0.21

Table 33 - Brick Slip Pull Out Results - Test Sample 32.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.25	0.27	88.57
85	0.27	0.29	89.86
85	0.27	0.29	89.93
100	0.42	0.42	104.18
Residual Readings	0.02	0.01	0.06

Table 34 - Brick Slip Pull Out Results - Test Sample 33.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.81	0.81	89.45
85	0.79	0.79	89.16
85	0.80	0.80	87.21
100	0.79	0.83	103.96
Residual Readings	0.06	0.05	-0.11

Table 35 - Brick Slip Pull Out Results - Test Sample 34.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.25	0.21	87.80
85	0.25	0.21	86.09
85	0.21	0.21	87.67
100	0.31	0.29	101.19
Residual Readings	0.05	0.05	0.02

Table 36 - Brick Slip Pull Out Results - Test Sample 35.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.19	0.18	88.73
85	0.22	0.21	89.36
85	0.22	0.20	88.12
100	0.25	0.24	105.34
Residual Readings	0.04	0.02	0.20

Table 37 - Brick Slip Pull Out Results - Test Sample 36.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.16	0.18	89.55
85	0.17	0.19	85.78
85	0.18	0.19	86.85
100	0.24	0.26	106.55
Residual Readings	0.02	0.02	0.08

Table 38 - Brick Slip Pull Out Results - Test Sample 37.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.23	0.26	86.61
85	0.26	0.26	86.27
85	0.26	0.26	86.34
100	0.32	0.33	107.97
Residual Readings	0.03	0.02	0.45

Table 39 - Brick Slip Pull Out Results - Test Sample 38.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.57	0.73	87.31
85	0.57	0.72	89.03
85	0.56	0.71	85.66
100	0.66	0.84	104.22
Residual Readings	0.06	0.00	0.43

Table 40 - Brick Slip Pull Out Results - Test Sample 39.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.55	0.71	85.18
85	0.55	0.70	85.26
85	0.55	0.71	85.93
100	0.67	0.85	107.46
Residual Readings	0.01	0.00	-0.07

Table 41 - Brick Slip Pull Out Results - Test Sample 40.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.42	0.41	85.80
85	0.43	0.39	87.48
85	0.39	0.38	86.69
100	0.51	0.48	101.66
Residual Readings	0.21	0.19	0.22

Table 42 - Brick Slip Pull Out Results - Test Sample 41.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.26	0.19	89.24
85	0.25	0.18	87.56
85	0.27	0.21	86.20
100	0.31	0.25	100.62
Residual Readings	0.04	0.03	0.46

Table 43 – Brick Slip Pull Out Results – Test Sample 42.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.26	0.19	89.63
85	0.24	0.18	85.92
85	0.28	0.21	89.68
100	0.32	0.26	104.34
Residual Readings	0.03	0.03	0.38

Table 44 - Brick Slip Pull Out Results - Test Sample 43.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.24	0.27	88.10
85	0.25	0.28	87.47
85	0.25	0.30	87.61
100	0.28	0.34	101.40
Residual Readings	0.23	0.25	0.46

Table 45 - Brick Slip Pull Out Results - Test Sample 44.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.27	0.27	88.08
85	0.29	0.28	85.48
85	0.31	0.30	89.41
100	0.30	0.32	106.19
Residual Readings	0.03	0.01	0.18

Table 46 - Brick Slip Pull Out Results - Test Sample 45.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.27	0.27	86.81
85	0.29	0.29	86.16
85	0.31	0.29	87.78
100	0.30	0.32	107.69
Residual Readings	0.03	0.01	-0.17

Table 47 - Brick Slip Pull Out Results - Test Sample 46.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.42	0.41	87.97
85	0.39	0.39	87.45
85	0.38	0.37	86.78
100	0.48	0.47	104.23
Residual Readings	0.06	0.07	0.07

Table 48 -- Brick Slip Pull Out Results -- Test Sample 47.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.42	0.41	88.24
85	0.39	0.39	87.80
85	0.37	0.37	85.59
100	0.47	0.46	102.00
Residual Readings	0.06	0.06	0.07

Table 49 – Brick Slip Pull Out Results – Test Sample 48.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.58	0.71	88.01
85	0.58	0.71	87.74
85	0.60	0.76	87.77
100	0.66	0.84	107.51
Residual Readings	0.04	0.00	0.34

Table 50 - Brick Slip Pull Out Results - Test Sample 49.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.45	0.58	88.78
85	0.44	0.56	85.20
85	0.44	0.57	86.93
100	0.53	0.70	107.61
Residual Readings	0.16	0.30	0.43

Table 51 - Brick Slip Pull Out Results - Test Sample 50.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.45	0.58	89.09
85	0.45	0.58	88.60
85	0.44	0.57	86.03
100	0.52	0.68	104.82
Residual Readings	0.14	0.33	0.18

Table 52 - Brick Slip Pull Out Results - Test Sample 51.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.75	0.52	86.39
85	0.77	0.53	87.97
85	0.76	0.53	87.52
100	0.89	0.59	107.05
Residual Readings	0.03	0.03	0.06

Table 53 - Brick Slip Pull Out Results - Test Sample 52.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.24	0.21	86.28
85	0.26	0.22	89.99
85	0.21	0.21	86.09
100	0.31	0.29	101.24
Residual Readings	0.04	0.03	0.32

Table 54 - Brick Slip Pull Out Results - Test Sample 53.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.05	0.25	86.27
85	0.06	0.26	87.98
85	0.06	0.26	89.11
100	0.12	0.31	104.56
Residual Readings	0.04	0.05	0.14

Table 55 - Brick Slip Pull Out Results - Test Sample 54.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.27	0.27	89.65
85	0.27	0.27	89.71
85	0.26	0.26	85.50
100	0.32	0.33	103.86
Residual Readings	0.10	0.06	0.12

Table 56 - Brick Slip Pull Out Results - Test Sample 55.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.15	0.17	85.61
85	0.18	0.19	87.83
85	0.18	0.19	86.66
100	0.24	0.25	103.41
Residual Readings	0.12	0.12	0.43

Table 57 - Brick Slip Pull Out Results - Test Sample 56.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.15	0.18	87.11
85	0.18	0.19	87.40
85	0.18	0.19	85.42
100	0.24	0.26	106.94
Residual Readings	0.12	0.12	0.45

Table 58 - Brick Slip Pull Out Results - Test Sample 57.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.16	0.18	89.88
85	0.18	0.20	89.22
85	0.18	0.19	85.48
100	0.24	0.26	107.61
Residual Readings	0.13	0.14	0.49

Table 59 - Brick Slip Pull Out Results - Test Sample 58.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.19	0.18	88.79
85	0.22	0.21	88.72
85	0.21	0.20	85.46
100	0.25	0.24	104.62
Residual Readings	0.01	0.01	-0.05

Table 60 - Brick Slip Pull Out Results - Test Sample 59.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.23	0.21	89.78
85	0.22	0.22	89.80
85	0.22	0.21	88.52
100	0.31	0.31	107.13
Residual Readings	0.05	0.05	-0.19

Table 61 - Brick Slip Pull Out Results - Test Sample 60.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.05	0.26	88.92
85	0.06	0.26	87.49
85	0.06	0.26	89.79
100	0.12	0.31	105.70
Residual Readings	0.01	0.01	-0.04

Table 62 -- Brick Siip Pull Out Results -- Test Sample 61.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.11	0.21	88.87
85	0.12	0.21	87.67
85	0.12	0.21	85.08
100	0.19	0.28	103.84
Residual Readings	0.12	0.08	0.36

Table 63 - Brick Slip Pull Out Results - Test Sample 62.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.23	0.27	86.93
85	0.29	0.32	89.66
85	0.29	0.30	87.81
100	0.30	0.35	102.43
Residual Readings	0.17	0.17	0.42

Table 64 - Brick Slip Pull Out Results - Test Sample 63.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.14	0.23	88.35
85	0.15	0.24	89.62
85	0.15	0.23	88.74
100	0.18	0.28	101.59
Residual Readings	0.05	0.05	-0.19

Table 65 - Brick Slip Pull Out Results - Test Sample 64.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.24	0.23	86.34
85	0.25	0.25	89.23
85	0.27	0.25	88.84
100	0.33	0.31	107.78
Residual Readings	0.00	0.00	0.24

Table 66 - Brick Slip Pull Out Results - Test Sample 65.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.19	0.15	86.57
85	0.20	0.17	89.95
85	0.23	0.18	88.37
100	0.26	0,23	105.45
Residual Readings	0.03	0.03	0.44

Table 67 - Brick Slip Pull Out Results - Test Sample 66.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.25	0.19	85.85
85	0.27	0.21	87.49
85	0.27	0.21	86.80
100	0.33	0.25	105.36
Residual Readings	0.05	0.11	0.32

Table 68 - Brick Slip Pull Out Results - Test Sample 67.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.29	0.25	87.35
85	0.31	0.26	88.24
85	0.32	0.27	87.27
100	0.36	0.32	105.61
Residual Readings	0.10	0.17	0.43

Table 69 - Brick Slip Pull Out Results - Test Sample 68.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.18	0.26	89.09
85	0.18	0.26	89.30
85	0.18	0.26	85.56
100	0.27	0.34	105.32
Residual Readings	0.13	0.10	0.33

Table 70 - Brick Slip Pull Out Results - Test Sample 69.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.31	0.20	88.36
85	0.34	0.23	88.45
85	0.33	0.23	86.63
100	0.37	0.26	102.22
Residual Readings	0.02	0.02	-0.18

Table 71 - Brick Slip Pull Out Results - Test Sample 70.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.43	0.27	86.99
85	0.46	0.30	85.59
85	0.47	0.31	87.04
100	0.57	0.45	102.91
Residual Readings	0.04	0.10	0.12

Table 72 - Brick Slip Pull Out Results - Test Sample 71.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.18	0.14	85.05
85	0.21	0.17	89.03
85	0.20	0.16	86.00
100	0.26	0.21	100.84
Residual Readings	0.01	0.01	0.37

Table 73 – Brick Slip Pull Out Results – Test Sample 72.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.28	0.25	86.67
85	0.30	0.25	85.06
85	0.32	0.26	88.70
100	0.38	0.32	107.58
Residual Readings	0.03	0.03	-0.14

Table 74 – Brick Slip Pull Out Results – Test Sample 73.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.37	0.16	87.79
85	0.41	0.19	89.50
85	0.39	0.18	86.70
100	0.46	0.24	104.49
Residual Readings	0.05	0.12	0.12

Table 75 - Brick Slip Pull Out Results - Test Sample 74.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.25	0.20	87.69
85	0.26	0.21	88.41
85	0.27	0.21	89.98
100	0.34	0.42	100.07
Residual Readings	0.14	0.15	0.19

Table 76 - Brick Slip Pull Out Results - Test Sample 75.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.34	0.27	89.30
85	0.34	0.30	85.29
85	0.35	0.31	86.47
100	0.41	0.32	104.28
Residual Readings	0.03	0.03	0.26

Table 77 - Brick Slip Pull Out Results - Test Sample 76.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.39	0.26	88.56
85	0.39	0.26	87.39
85	0.49	0.30	88.97
100	0.54	0.30	105.58
Residual Readings	0.03	0.06	0.06

Table 78 – Brick Slip Pull Out Results – Test Sample 77.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.44	0.32	87.00
85	0.45	0.34	88.10
85	0.46	0.34	88.43
100	0.54	0.39	102.08
Residual Readings	0.06	0.06	0.08

Table 79 – Brick Slip Pull Out Results – Test Sample 78.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.24	0.23	89.00
85	0.26	0.25	89.07
85	0.25	0.24	85.54
100	0.30	0.32	103.28
Residual Readings	0.01	0.04	0.07

Table 80 - Brick Slip Pull Out Results - Test Sample 79.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.31	0.29	87.48
85	0.32	0.30	89.94
85	0.30	0.29	86.22
100	0.37	0.36	105.66
Residual Readings	0.12	0.15	0.01

Table 81 - Brick Slip Pull Out Results - Test Sample 80.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.22	0.28	87.42
85	0.23	0.28	86.11
85	0.23	0.30	88.18
100	0.27	0.26	101.54
Residual Readings	0.02	0.08	-0.15

Table 82 - Brick Slip Pull Out Results - Test Sample 81.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.21	0.18	85.49
85	0.26	0.22	87.79
85	0.26	0.22	89.83
100	0.29	0.23	101.26
Residual Readings	0.01	0.00	0.25

Table 83 - Brick Slip Pull Out Results - Test Sample 82.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.60	0.66	89.32
85	0.58	0.64	88.87
85	0.56	0.59	85.08
100	0.63	0.65	104.53
Residual Readings	0.07	0.08	0.17

Table 84 - Brick Slip Pull Out Results - Test Sample 83.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.22	0.26	87.64
85	0.24	0.30	89.11
85	0.23	0.34	85.95
100	0.30	0.37	106.23
Residual Readings	0.06	0.19	0.24

Table 85 - Brick Slip Pull Out Results - Test Sample 84.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.25	0.29	85.77
85	0.26	0.33	87.68
85	0.29	0.31	89.81
100	0.39	0.42	105.28
Residual Readings	0.22	0.28	0.20

Table 86 - Brick Slip Pull Out Results - Test Sample 85.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.23	0.27	89.87
85	0.34	0.40	88.92
85	0.32	0.36	85.20
100	0.15	0.20	101.17
Residual Readings	0.08	0.11	0.08

Table 87 - Brick Slip Pull Out Results - Test Sample 86.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.47	0.49	86.83
85	0.47	0.50	89.88
85	0.45	0.54	87.72
100	0.49	0.56	106.56
Residual Readings	0.04	0.05	0.14

Table 88 - Brick Slip Pull Out Results - Test Sample 87.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.31	0.40	88.37
85	0.31	0.37	87.40
85	0.31	0.37	85.93
100	0.37	0.47	101.06
Residual Readings	0.02	0.02	0.35

Table 89 - Brick Slip Pull Out Results - Test Sample 88.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.32	0.39	86.58
85	0.33	0.37	87.30
85	0.33	0.41	86.06
100	0.38	0.47	100.75
Residual Readings	0.05	0.16	0.48

Table 90 - Brick Slip Pull Out Results - Test Sample 89.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.40	0.47	89.75
85	0.40	0.50	88.08
85	0.40	0.39	87.58
100	0.45	0.50	100.48
Residual Readings	0.10	0.10	0.42

Table 91 - Brick Slip Pull Out Results - Test Sample 90.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.48	0.51	86.71
85	0.48	0.52	86.11
85	0.51	0.61	89.19
100	0.62	0.71	104.00
Residual Readings	0.06	0.09	-0.64

Table 92 - Brick Slip Pull Out Results - Test Sample 91.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.33	0.39	86.33
85	0.34	0.40	85.11
85	0.36	0.40	89.30
100	0.40	0.47	103.71
Residual Readings	0.08	0.13	0.49

Table 93 - Brick Slip Pull Out Results - Test Sample 92.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.29	0.29	86.73
85	0.30	0.34	88.38
85	0.31	0.31	89.51
100	0.33	0.37	102.05
Residual Readings	0.03	0.06	-0.18

Table 94 - Brick Slip Pull Out Results - Test Sample 93.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.26	0.25	87.03
85	0.26	0.28	88.18
85	0.30	0.32	87.68
100	0.35	0.45	108.00
Residual Readings	0.01	0.01	0.02

Table 95 - Brick Slip Pull Out Results - Test Sample 94.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.48	0.47	88.38
85	0.49	0.49	86.77
85	0.50	0.58	89.90
100	0.59	0.64	102.53
Residual Readings	0.08	0.19	-0.13

Table 96 - Brick Slip Pull Out Results - Test Sample 95.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.44	0.53	85.10
85	0.52	0.52	86.81
85	0.45	0.46	86.42
100	0.47	0.47	100.84
Residual Readings	0.02	0.07	0.20

Table 97 - Brick Slip Pull Out Results - Test Sample 96.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.28	0.28	86.79
85	0.28	0.28	88.24
85	0.28	0.34	86.02
100	0.35	0.39	107.63
Residual Readings	0.00	0.01	0.07

Table 98 - Brick Slip Pull Out Results - Test Sample 97.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.35	0.36	86.04
85	0.37	0.39	89.03
85	0.38	0.40	87.67
100	0.45	0.47	105.79
Residual Readings	0.01	0.01	-0.04

Table 99 - Brick Slip Pull Out Results - Test Sample 98.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.16	0.30	89.79
85	0.20	0.21	88.71
85	0.19	0.13	86.85
100	0.23	0.40	105.86
Residual Readings	0.01	0.08	0.05

Table 100 - Brick Slip Pull Out Results - Test Sample 99.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.36	0.49	85.26
85	0.37	0.47	86.06
85	0.42	0.55	85.67
100	0.49	0.58	104.83
Residual Readings	0.05	0.05	-0.07

Table 101 - Brick Slip Pull Out Results - Test Sample 100.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.47	0.56	87.07
85	0.51	0.54	85.07
85	0.54	0.57	88.82
100	0.80	0.85	104.36
Residual Readings	0.17	0.21	-0.17

Table 102 - Brick Slip Pull Out Results - Test Sample 101.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.28	0.36	86.14
85	0.28	0.31	85.41
85	0.29	0.40	89.79
100	0.40	0.46	107.72
Residual Readings	0.01	0.02	-0.04

Table 103 - Brick Slip Pull Out Results - Test Sample 102.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.25	0.34	85.11
85	0.27	0.29	87.92
85	0.26	0.33	85.00
100	0.37	0.37	105.04
Residual Readings	0.12	0.14	0.17

Table 104 – Brick Slip Pull Out Results – Test Sample 103.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.28	0.37	85.73
85	0.29	0.39	86.47
85	0.29	0.38	85.31
100	0.37	0.49	104.43
Residual Readings	0.04	0.09	0.06

Table 105 - Brick Slip Pull Out Results - Test Sample 104.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.55	1.01	89.82
85	0.52	1.01	86.12
85	0.53	1.03	88.98
100	0.63	1.08	105.71
Residual Readings	0.07	0.27	0.50

Table 106 - Brick Slip Pull Out Results - Test Sample 105.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.57	0.70	86.12
85	0.59	0.72	88.72
85	0.59	0.75	86.35
100	0.63	0.80	103.05
Residual Readings	0.00	0.00	-0.09

Table 107 - Brick Slip Pull Out Results - Test Sample 106.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)
85	0.31	0.30	89.62
85	0.30	0.29	85.10
85	0.31	0.29	87.51
100	0.40	0.37	107.49
Residual Readings	0.02	0.07	0,10

Table 108 -- Brick Slip Pull Out Results -- Test Sample 107.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)	
85	0.42	86.30		
85	0.44	0.57	88.90	
85	0.43	0.56	86.77	
100	0.52	0.68	105.33	
Residual Readings	0.02	0.03	0.02	

Table 109 - Brick Slip Pull Out Results - Test Sample 108.

Target Load (N)	Displacement 1 (mm)	Displacement 2 (mm)	Actual Load (N)	
85	0.57	0.40	87.82	
85	0.57	0.40	87.17	
85	0.57	0.40	86.98 103.81	
100	0.87	0.58		
Residual Readings	0.01	0.01	-0.01	

8 APPENDIX - DRAWINGS

The following 5 unnumbered pages are copies of James & Taylor Limited drawings numbered:

- BSS-TRB-GA-001
- BSS-TRB-GA-002
- BSS-TRB-GA-003
- BSS-TR-IBPRC-SK-01
- BSS-TRA-T1

END OF REPORT

TEST RIG TYPE B STEEL FRAMING (TO BE PROVIDED BY TECHNOLOGY CENTRE)

203x203x46 UC

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

STEEL FRAMING RECUIREMENT 203x203x46 UC (AS DRAWN) 60x60x6 RSA (AS DRAWN)

RENSIONS
CLEAT
JAMES & TAYLOR LTD

BRICK SLIP SYSTEM

TEST RIG TYPE B GENERAL ARRANGEMENT DATE: 03/12/2021 JSC JSC SCALE.

1:16

DRAWWIG HOUSER.

REVISION.

BSS-TRB-GA-001

PLOT DATE:
December 5, 2021 5.40 PM © James 8 Taylor 12: 2039

203x203x46 UC

GROUND LEVEL + 500mm

3010

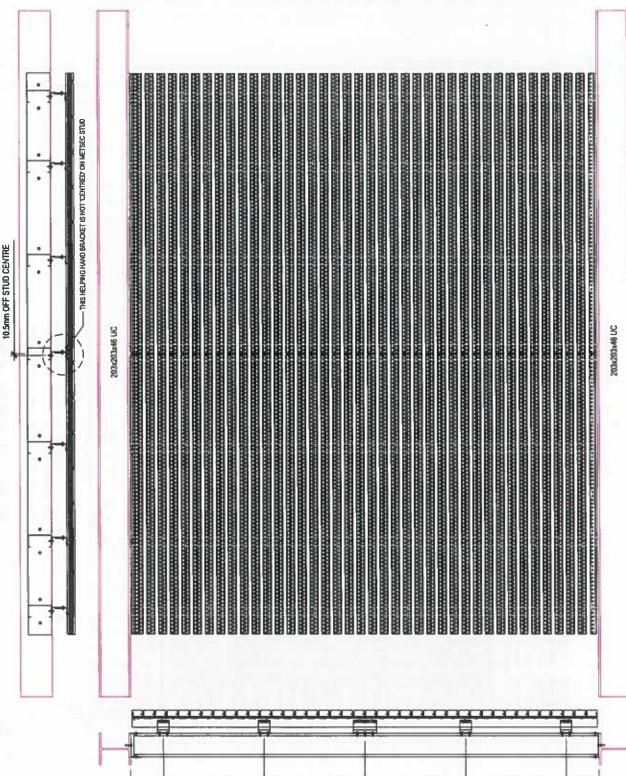
METSEC REQUIREMENT BSS-TRB-GA-002 GENERAL NOTES: VERTICAL STUDS DRAWING NUMBER 03/12/2021 DRAWN BY: ည္သင SKE 1:16 TEST RIG TYPE B
METSEC BACKING WALL; STUDWORK, BASE, AND HEAD TRACK SETTING OUT/CONFIGURATION 161,25 8 8 8 203x203x46 UC 203x203x46 UC 3602 8 Ş 8 . 161,25 **1962**

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECTS AND ENGINEER'S DRAWINGS.

154M16-70s (THEORETICAL LENGTH 3602mm) = 1 No. 150M12-75 (THEORETICAL LENGTH 2987mm) = 7 No. BASE TRACK 154M12-40 (THEORETICAL LENGTH 3602mm) = 1 No.

JAMES & TAYLOR LTD


PROJECT: BRICK SLIP SYSTEM

GENERAL ARRANGEMENT Date: TEST RIG TYPE B

SC PLOT SIZE A3

C James | Tayes | 18 000 PLOT DATE: December 5, 2021 5:42 PM

TEST RIG TYPE B 'HELPING HAND' BRACKET, VERTICAL SUB-STRUCTURE AND BARRACUDA RAIL SETTING OUT/CONFIGURATION

5,748

GENERAL NOTES:

DO NOT SCALE FROM THIS DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECTS AND ENGINEER'S DRAWINGS.

BARRACUDA HORIZONTAL RAIL REQUIREMENT

510

5'119

BAR-R2-1800 = 2 No.

BAR-R1-1800 = 78 No.

BAR-R3-1800 = 2 No.

BARRACUDA VERTICAL RAIL REQUIREMENT

BAR-VL1-2990 = 6 No. BAR-VT1-2990 = 1 No.

Nvelope 90 (ADJUSTMENT RANGE 92mm TO 132mm) HELPING HAND' BRACKET REQUIREMENT

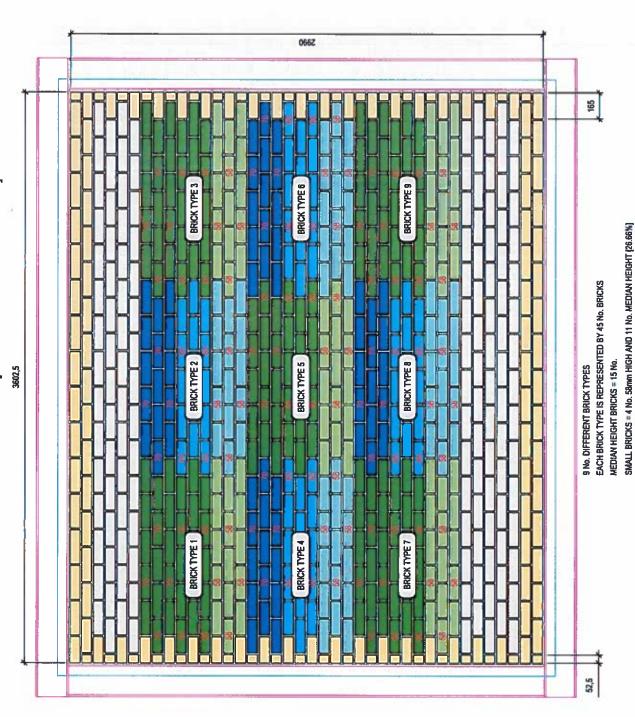
VERTICAL LOAD BEARING HELPING HAND = 7 No.

RESTRAIN HELPING HAND = 28 No.

REVISIONS:	DATE
JAMES & TAYLOR LTD	
PROJECT: BRICK SLIP SYSTEM	
TEST RIG TYPE B GENERAL ARRANGEMENT DATE: 03/12/2021	
DRAWN BY:	CHECKED BY:

POTUM DV.	CHECKET BY
LINAMIN DE	DUCTORED BY
JSC	JSC
SCALE	PLOT SIZE
1:16	A3
DRAWING MUNBER:	REVISION:
BSS-TRB-GA-003	

210


5'199

9'119

3010

C amen's Topics (20)
5:45 PM
PLOT DATE. December 5, 2021

TEST RIG TYPE A - TEST 1 [UNMORTARED BRICK PULL]

GENERAL NOTES:

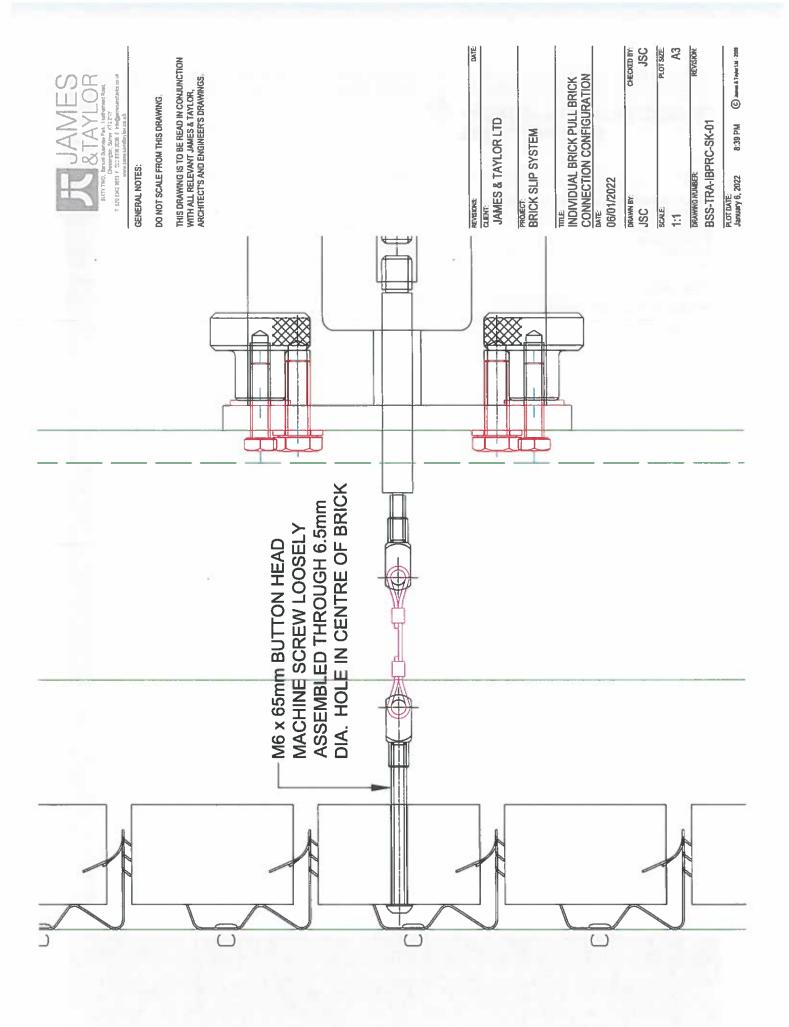
DO NOT SCALE FROM THIS DRAWNG.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT JAMES & TAYLOR, ARCHITECT'S AND ENGINEER'S DRAWINGS.

= BLOCKLEY WINDERMERE GREY SOLID

215mm LONG 'STANDARD' SLIPS = 135 No.

SWOOTH CREAM
215mm LONG 'STANDARD' SLIPS = 30 No.
165mm LONG 'STANDARD' SLIPS = 38 No.
52mm LONG 'STANDARD' SLIPS = 38 No.
215mm LONG 'STANDARD' SLIPS = 38 No.
215mm LONG SLIPS WITH 'TOP' REBATE = 15 No.
215mm LONG SLIPS WITH 'TOP' REBATE = 15 No.
165mm LONG SLIPS WITH 'BOTTOM' REBATE = 1 No.
52mm LONG SLIPS WITH 'BOTTOM' REBATE = 1 No.
52mm LONG SLIPS WITH 'BOTTOM' REBATE = 1 No.
52mm LONG SLIPS WITH 'BOTTOM' REBATE = 1 No.


REVISIONS	DATE
JAMES & TAYLOR LTD	
PROJECT: BRICK SLIP SYSTEM	
TEST RIG TYPE A - TEST 1 UNMORTARED BRICK PULL DATE 04/12/2021	0 0 2
DRAWH BY: USC	CHECKED BY
scale 1:16	PLOT SIZE A3
DRAWING MANBER: BSS-TRA-T1	REVISION

C James Tope in 1889

5:38 PM

PLOT DATE December 5, 2021

LARGE BRICKS = 4 No. 70mm HIGH AND 11 No. MEDIAN HEIGHT [26.66%]

VINCI Technology Centre UK Limited Stanbridge Road Leighton Buzzard Bedfordshire LU7 4QH UK

0333 5669000

info@technology-centre.co.uk www.technology-centre.co.uk

System Laboratories UK LTD Classification Report

Classification of reaction to fire performance of construction products and building elements in accordance with BS EN 13501-1:2018

Report Number 775

Issue A

Prepared for James Taylor Ltd.
Date 22/05/2024

System Laboratories UK LTD Unit 13 Apex Park Leighton Road Leighton Buzzard LU7 3RE United Kingdom

Issue	Date	Notes
A	22/05/2024	First issue

I2500-04 Page 1 of 10

Report No.:

775-A

Prepared by

Name Oliver Bauld

Position Laboratory Technician

Signature O. Boute

Authorised by

Name Asaf Gitarts

Position Laboratory Manager

Date 22/05/2024

Signature

This report is made on behalf of System Laboratories UK LTD and may only be distributed in its entirety, without amendment, and with attribution to System Laboratories UK LTD to the extent permitted by the terms and conditions of the contract. Test results relate only to the specimens tested. System Laboratories UK LTD has no responsibility for the design, materials, workmanship or performance of the product or specimens tested. This report does not constitute an approval, certification or endorsement of the product tested and no such claims should be made on websites, marketing materials, etc. Any reference to the results contained in this report should be accompanied by a copy of the full report, or a link to a copy of the full report.

System Laboratories UK LTD's liability in respect of this report and reliance thereupon shall be as per the terms and conditions of contract with the client and System Laboratories UK LTD shall have no liability to third parties to the extent permitted in law.

I2500-04 Page 2 of 10

Contents

1.	In ^r	troduction	4
2.	De	etails of classified product	5
	2.1.	General	5
	2.2.	Traceability	5
	2.3.	Sample details	5
	2.4.	Detailed product description	6
3.	Re	eports and results in support of this classification	8
	3.1.	Reports	8
	3.2.	Results	9
4.	Cla	assification and field of application	10
	4.1.	Reference of classification	10
	4.2.	Classification	10
	4.3.	Field of application	10
5.	Li	mitations	10
6	Re	ferences	11

I2500-04 Page 3 of 10

1. Introduction

This classification report defines the classification assigned to The Barracuda Brick Slip Support System, in accordance with the procedures given in BS EN 13501-1: 2018.

CLASSIFICATION OF REACTION TO FIRE IN ACCORDANCE WITH BS EN 13501-1: 2018

Sponsor: James Taylor Ltd. Prepared for: James Taylor Ltd.

Place of manufacture: 62 Barwell Business Park, Leatherhead Road, KT9 2NY, UK

CAB Number: N/A Classification report No.: 775-A

Date of issue 22/05/2024

This classification report may only be used or reproduced in its entirety.

I2500-04 Page 4 of 10

2. Details of classified product

2.1. General

Classification according to BS EN 13501-1:2018 of The Barracuda Brick Slip Support System.

2.2. Traceability

The test sample was supplied by the sponsor. System Laboratories UK LTD was not involved in the sampling process and therefore cannot comment upon the relationship between the samples supplied for the test and the products supplied to the market.

2.3. Sample details

Test sponsor James Taylor Ltd.

62 Barwell Business Park

Leatherhead Road

KT9 2NY

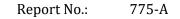
UK

Place of manufacture As above

Trade name The Barracuda Brick Slip Support System

provided by sponsor)

Product data (as provided by sponsor)


Generic type of product Brick slip support system

Nominal thickness (mm) 100 mm

Density of core (kg/m³) 7900 (Stainless Steel) & 2700 (Aluminium)

Mass per unit area (kg/m²) 8.788
Colour Metallic
Test face N/A

I2500-04 Page 5 of 10

Flame retardant added, or N/A organic content limited

during production

Substrate and ventilation conditioned

Substrate N/A Type of air gap Any

2.4. Detailed product description

The product is configured as detailed below, front to back.

F F	omigured as detailed below, mon				
	Type of product/layer	Horizontal Brick Slip Retention Rail			
Horizontal	Product/layer reference	Barracuda Stainless Steel 'Standard' Rail [R1]			
Brick Slip	Thickness	40 mm (Projecting leg dimension)			
Retention Rail	Colour	Metallic			
Retelltion Rail	Construction form	Riveted to Vertical Rails VL and VT			
	Type of product/layer	Horizontal Brick Slip Retention Rail			
Howizontal	Product/layer reference	Barracuda Stainless Steel 'Bottom' Rail [R2]			
Horizontal	Thickness	30.75 mm (Projecting leg dimension)			
Brick Slip	Colour	Metallic			
Retention Rail	Construction form	Riveted to Vertical Rails VL and VT			
	Type of product/layer	Horizontal Brick Slip Retention Rail			
**	Product/layer reference	Barracuda Stainless Steel 'Top' Rail [R3]			
Horizontal	Thickness	30.75 mm (Projecting leg dimension)			
Brick Slip Retention Rail	Colour	Metallic			
Retention Ran	Construction form	Screwed to Vertical Rails VL and VT			
	Type of product/layer	Vertical Substructure Rail			
77 1	Product/layer reference	Barracuda Extruded Aluminium Vertical Rail [VL]			
Vertical	Thickness	68mm [maximum projecting dimension]			
Substructure	Colour	Metallic			
Rail	Construction form	Screwed to Helping Hand Brackets			
	Type of product/layer	Mineral wool			
M: 1747 1	Product/layer reference	Mineral wool			
	Thickness	Any			
Mineral Wool	Colour	Green			
	Construction form	Friction fit			

I2500-04 Page 6 of 10

3. Reports and results in support of this classification

3.1. Reports

Name of laboratory Name of test sponsor Test report No. Test method/field of application

System Laboratories UK James Taylor Ltd. 773A BS EN ISO 1182:2020

System Laboratories UK James Taylor Ltd. 774A BS EN ISO 1716:2018

I2500-04 Page 7 of 10

3.2. Results

		Number	Res	sults	
Standard/Decision	Parameter	of tests	Continuous	Compliance with class	
		or tests	parameter mean	A1	
BS EN ISO 1716:2018 (a)	MJ/kg	3	0.573 MJ/kg	≤ 2 MJ/kg	
Mineral Wool	MIJ/ Kg	3	0.575 MJ/Kg	Compliant	
BS EN ISO 1716:2018 (e)	MJ/kg	3	0.117 MJ/kg	≤ 2 MJ/kg	
Product as whole	MIJ/ Kg	3	0.117 MJ/Kg	Compliant	
BS EN ISO 1182:2020	ΔΤ	5	7.14 °C	≤ 30 °C	
Mineral Wool	Δ1	3	7.14 C	Compliant	
BS EN ISO 1182:2020	Δm	5	2.23%	≤ 50 %	
Mineral Wool	ΔΠ	5	2.23%	Compliant	
BS EN ISO 1182:2020	t	5	No sustained flaming	No sustained flaming	
Mineral Wool	t_{f}	3	No sustained Haming	Compliant	

Note:

Metals were not tested in accordance with BS EN ISO 1716:2018 clause 9.4.1 where all metals are deemed to have a calorific value of 0.

I2500-04 Page 8 of 10

4. Classification and field of application

4.1. Reference of classification

This classification has been carried out in accordance with BS EN 13501-1:2018.

4.2. Classification

The product The Barracuda Brick Slip Support System, in relation to reaction to fire behaviour is classified:

Fire behaviour			Smoke production			Flaming droplets
A1	-	S	-	,	d	-

Reaction to fire classification:	A1
----------------------------------	-----------

4.3. Field of application

This classification is valid for the following product and mounting and fixing parameters:

Thickness	Any
Colour	Metallic, Green (Mineral Wool)
Composition/build up	Mineral wool can be removed
Density of core	Any
Mass per unit area	Any

5. Limitations

This classification document does not represent type approval or certification of the product.

The laboratory has played no part in sampling of the product.

I2500-04 Page 9 of 10

6. References

BS EN 13501-1:2018 - Fire classification of construction products and building elements

BS EN ISO 1182:2020 - Reaction to fire tests for products — Non-combustibility test

BS EN ISO 1716:2018 – Reaction to fire tests for products — Determination of the gross heat of combustion (calorific value)

-End of Report-

I2500-04 Page 10 of 10